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Abstract— The Discrete Tchebichef transform (DTT) is a 

linear orthonormal version of the orthogonal Tchebichef 
polynomials, which is recently used in image analysis and 
compression. This paper presents a new fast block-pruned 4x4 
DTT algorithm which is suitable for pruning the output 
coefficients in block fashion. The principle idea behind the 
proposed algorithm is the utilization of the 
distributed-arithmetic and the symmetry properties of 2-d DTT 
in order to combine similar terms of the linear combination of 
each computed pruned output. As well as, some trivial 
multiplications are represented by shifts or add-shift operations 
to reduce the number of required computations. The proposed 
algorithm requires the smallest computation complexity with 
respect to other recently proposed algorithms. Different 
block-pruning sizes are considered in the comparative analysis 
of the proposed algorithm vs. others. Furthermore, the 
experimental results show that the DTT is a good alternative for 
the Discrete Cosine Transform (DCT) in image compression 
especially for artificial diagrams images. 
 

Index Terms— DTT, Fast algorithm, Image Compression, 
Pruned.  
 

I. INTRODUCTION 
  Huge amounts of image data such as digital photographs, 

webpage pictures, and videos are created and transmitted via 
the internet. Due to the limited data storage and network 
capabilities, image compression is a great interest field of 
research. Therefore, there is a strong demand towards the 
efficient compression systems. The lossy and lossless 
compressions are the two classes of the image compressions. 
Lossless compression completely recovers the original data 
when decompressing the compressed data. On the contrary, 
lossy compression loses some information over the 
compression-decompression process. Human eyes can’t 
recognize small differences in two similar pictures. Thus, 
Images can be compressed using lossy compression.  

Lossy image compression applies the transformation 
techniques in order to transform the original image data from 
the spatial domain into a different domain such as the 
frequency domain.  The transformation methods such as 
Fourier transform and Wavelet transform which have both 
analog and discrete transforms into another type of frequency 
domain based on trigonometric functions, and compactly 
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supported functions called wavelets, respectively. The 
Discrete Cosine Transform (DCT) is a transform method 
used in JPEG image compression. 

DCT algorithms can be classified into two classes; indirect 
and direct methods. A direct 2-D DCT method based on 
polynomial transform techniques was proposed in [1]. 
Another direct method is a matrix factorization algorithm of 
the 2-D DCT matrix [2]. For (NxN)-point 2-D DCTs, the 
conventional direct method follows the row-column method 
which requires 2N sets of N-point 1-D DCTs. However, true 
2-D techniques are more efficient than the conventional 
row-column approach. In [3], Vetterli proposed an indirect 
method to calculate 2-D DCT by mapping it into a 2-D DFT 
plus a number of rotations.  

In many DCT based applications, the most useful 
information is kept by the low-frequency DCT coefficients. 
Exploiting this characteristic, additional speed-up is possible 
by taking into account the statistics of the signal to be 
transformed. One method to achieve this is usually called 
‘pruning’, where only a subset of all the DCT coefficients are 
computed, generally the low-frequency DCT components. 
There are several algorithms for pruning the 1-D DCT, 
[4]-[8], but in [9]-[12], the pruning of the 2-D DCT is 
addressed.  

In [5], a pruned DCT algorithm was computed by a 
modified real-valued output-pruned FFT algorithm for 
appropriately permuted data samples. A recursive pruned 
DCT algorithm was presented [6], with a structure that allows 
the generation of the next higher order pruned DCT from two 
identical lower order pruned DCTs. The recursive pruned 
DCT ( N1 pruned out of N point) was utilized to compute 2D 
pruned DCT (N1x N1) based on row-column decomposition 
for image compression applications. Different pruned block 
sizes were computed and applied for image compression [6]. 
The pruned 2D DCT based on row-column decomposition 
has complexity levels depends on the data pruning patterns 
[9]. With respect to full 8x8 2D DCT block, the complexity 
levels for computing the upper-left pruned 4x4, and 6x6 
sub-blocks, are about 55%, and 72%, respectively [9]. The 
pruning algorithms in [10], and [12] compute a set of 
coefficients included in a top-left triangle. It corresponds to a 
zig-zag scanning where all coefficients in each diagonal are 
computed. In [9] and [5], the pruning algorithm computes 
N1xN1 block coefficients out of NxN. The pruning 
algorithms in [10], and [12] are more “useful” since it can be 
used in practical image and video coding algorithms where 
the zig-zag scanning pattern is used.  

The Discrete Tchebichef Transform (DTT) is another 
transform based on a linear orthonormal version of 
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Tchebichef polynomials and recently used in image 
compression [13]. The DTT and the DCT have very similar 
energy compactness for natural images such as photographs 
[14]. On the other hand, for images with high illumination 
variations such as artificial diagrams, the DTT has higher 
energy compactness than the DCT [15]. The DTT is also 
utilized in image feature extraction and pattern recognition 
[16]. Recent publications proposed fast 4x4 DTT algorithms 
for image compression in [17], and [18]. As well as, a 2x2 
block-pruned out of 4x4 DTT algorithm which computes 
only the upper-left quarter of the outputs, was proposed in 
[19].  

In this paper, a fast 4x4 algorithm which is suitable for 
different block-pruning sizes is proposed. The rest of the 
paper is organized as follows. Section II introduces the 
definition and the properties of the DTT algorithm and its 4x4 
version. The proposed fast block-pruning 4x4 DTT algorithm 
is presented in Section III. In Section IV, the computation 
complexity of the proposed algorithm is illustrated with 
respect to different block-pruning sizes. As well as, the 
computation complexity of the proposed algorithm is 
compared with those of others. Section V demonstrates the 
reconstruction of different standard images using the pruned 
2-D DTT vs. the pruned 2-D DCT. Finally, the conclusion is 
given in Section VI. 

 

II. THE DTT DEFINITION AND PROPERTIES 

A. Definition 
The DTT is defined as follows: 
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where x is an input vector of N values, and X is the vector 
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B. The 1-D DTT 
The N-point 1-D DTT X(m) of an input sequence x(n), for 

n, m = 0, …, N-1 is defined as 
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and the inverse 1-D DTT is given by 
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where the kernel t(m, n) represents tm(n) the Tchebichef 
orthogonal basis given by (2).  

C. The 2-D DTT 
The 2-D DTT can be defined in the matrix form [18] as 

txtX ′= ,  (9) 
where x is the 2-D input matrix, t is the Tchebichef 

transform kernel and X is the 2-D transform coefficients 
matrix.  

C) Symmetry and separability properties 
The DTT satisfies the even symmetry property [18] as 

from (2) 
).()1()1( ntnNt m

m
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The 2-D DTT satisfies the separability property as the 

DTT is linear transform [17]. Hence, the 2-D DTT can be 
evaluated using the 1-D DTT in a row-column decomposition 
fashion. 

 

III. PROPOSED BLOCK-PRUNED 4X4 DTT ALGORITHM 
The transform kernel for 4-point DTT can be defined from 

(2) as 
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Let us define 2/1=a , and 5/1=b , hence (11) can be 
rewritten as 
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Substituting from (12) in (9), each 2-D transform 
coefficient Xi, j can be computed as linear combination of the 
elements of the input matrix x. Furthermore, the even 
symmetry property in (10) is used to reduce the number of 
arithmetic operations in a distributed arithmetic style. For 
block-pruning, only the specific transform coefficients can be 
computed in upper-left sub-blocks. The 3x3 block-pruned 
coefficients are given as: 

))()()()(
)()()()((

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

0,0

xxxxxxxx
xxxxxxxxaX

++++++++

+++++++=  (13.a) 

))()(3)()(3
)()(3)()(3(

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

1,0

xxxxxxxx
xxxxxxxxbaX

−+−+−+−+

−+−+−+−= (13.b) 

))()()()(
))()()()((3(

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

0,1

xxxxxxxx
xxxxxxxxbaX

+++++−+−

+++++−+−=  

 (13.c) 

))()(3)()(3
)(3)(9)(3)(9(

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
22

1,1

xxxxxxxx
xxxxxxxxbaX

−+−+−−−−

−+−+−−−−=

(13.d) 

))()()()(
)()()()((

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

2,0

xxxxxxxx
xxxxxxxxaX

+−+++−++

+−+++−+=  (13.e) 



International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009 
1793-8201 

 

 - 260 - 

))()()()(
))()()()((3(

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

2,1

xxxxxxxx
xxxxxxxxbaX

+−+++++−

+−+++++−=  

 (13.f) 

)))()()()((
)()()()((

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

0,2

xxxxxxxx
xxxxxxxxaX

+++++++−

+++++++=  (13.g) 

)))()()()((
)()()()((

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

2,2

xxxxxxxx
xxxxxxxxaX

+−+++−+−

+−+++−+=  (13.h) 

)))()(3)()(3(
)()(3)()(3(

1,22,20,23,21,12,10,13,1

1,32,30,33,31,02,00,03,0
2

1,2

xxxxxxxx
xxxxxxxxbaX

−+−+−+−−

−+−+−+−=  (13.i) 

 
It is obvious that, the multiplications by the factors a2=0.25, 

3, and 9, can be computed by a shift-2bits, a shif-1bit and an 
addition, and a shift-3bits and an addition, operations, 
respectively.  The full 4x4 DTT coefficients can be computed 
as well for the remaining points and the full 4x4 DTT 
computation complexity is given in the next section.  

 

IV. THE COMPUTATION COMPLEXITY 
From the computation complexity point of view, the 

proposed block-pruned 4x4 DTT algorithm is compared with 
recent algorithms [17], [18], [19], and the traditional 
separability-symmetry algorithm. We have to mention that 
the scaled algorithm in [18] is considered here as a 
normalized full version that require 16 multiplications as a 
last stage to get the final output. Table I gives comparative 
results of the compared algorithms with the proposed one in 
terms of the number of multiplications, additions, and shifts 
operations. Different block-pruned sizes out of 4x4 are 
considered for our proposed algorithm complexity.  

 
TABLE  I. COMPARATIVE RESULTS BETWEEN DIFFERENT 2-D DTT 

ALGORITHMS AND THE PROPOSED ONE. 
Computation complexity 

Mults / adds / Shifts 

B
lock-pruned 

D
TT Separability 

& 
Symmetry 

[17] [18] 
 

[19] Proposed 

1x1 - - - - 0/15/1 

2x2 - - - 24/48/00 2/39/7 

3x3 - - - - 6/66/14 

4x4 
(Full) 

64/96/0 32/66/00 16/80/16 - 12/80/20 

 
It is clear that our proposed algorithm complexity is much 

better than that of the algorithm in [19] for pruned 2x2-block.   
For the full 4x4 DTT outputs, our proposed algorithm is 
slight better than algorithm in [18]. However, our proposed 
algorithm is much better than that in [17] as saving 20 
multiplications by turning it into shift-add operations which 
are much simpler than multiplications.  

 

V. THE EXPIREMENATL RESULTS OF THE BLOCK-PRUNED 
DTT VS. DCT 

The proposed DTT algorithm is tested in compression of 

set of standard images, shown in Fig.1, which are 
reconstructed from different upper-left block-pruned sizes of 
1-point (dc component), 2x2, 3x3, and 4x4 coefficients. The 
reconstructed images are compared with those reconstructed 
by the pruned DCT. Fig. 2 compares the PSNR of the set of 
images reconstructed by different block-pruning sizes of the 
DTT and the DCT. The performance of the DTT is very 
similar to that of the DCT for the natural images such as 
Lenna, and Boat. For artificial images such as Glass, and 
Ruler, the PSNR of the DTT is slightly better than that of the 
DCT. The mean square error (MSE) of the reconstructed 
Lenna, and Ruler are shown in Table II. Fig. 3 demonstrates 
the Lenna image reconstructed from different block-pruned 
out of 4x4 DTT.  

 
TABLE  II. MSE OF THE RECONSTRUCTED LENNA, AND RULER IMAGES WITH 

RESPECT TO DIFFERENT BLOCK-PRUNED OF THE DTT AND THE DCT. 

MSE of reconstructed image 

Lenna Ruler 

B
lock-pruned 

D
TT 

DTT DCT DTT DCT 

1x1 24.29 24.51 
 

74.63 74.63 

2x2 11.35 11.18 49.40 49.28 

3x3 3.65 3.47 40.15 47.62 

4x4 
(Full) 

0 0 0 0 

 

VI. CONCLUSION 
In this paper, a new fast algorithm of 2-D 4x4 DTT has 

been proposed which is suitable for pruning in a block 
fashion. Our proposed algorithm requires less computation 
complexity in comparison with the recent published 
algorithms. The basic idea behind the algorithm is to utilize 
the symmetry property beside the distributed-arithmetic to 
combine similar terms in linear combinations for each pruned 
output. The block-pruned 4x4 DTT is used to reconstruct a 
set of standard images showing that the DTT compression is 
very similar to the DCT compression for the natural 
photograph images. For the artificial images which have high 
illumination variations, the DTT has higher energy 
compactness than the DCT. For Future work, the 
zigzag-order pruning of the 2-D DTT algorithm is an 
interested research area as the zigzag scanning is more 
suitable for image compression standard. As well as, the 
regularity of the DTT algorithm is highly required. 
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Figure 1. Set of original images, (a) Lenna, (b) Boat, (c) Glass, and (d) 
Ruler images, used in the experimental evaluation of the DTT and the 
DCT. 
 

 
Figure 1. Comparison of reconstruction errors due to different 
upper-left block-pruned sizes of 4x4 DTT vs. 4x4 DCT, for Lenna, Boat, 
Glass, and Ruler images. 
 

 

Figure 2. Lenna image reconstructed from different 
upper-left block-pruned DTT out of 4x4 block, (a) dc 

coefficient, (b) 2x2, (c) 3x3, and (d) full 4x4. 
 
 
 


