Abstract—The Classical floor planning that usually handles only block packing to minimize silicon area, So modern floor planning could be formulated as a fixed-outline floor planning. It uses some algorithms such as B-TREE representation, simulated annealing and adaptive fast simulated annealing. Comparing above three algorithms the better efficient solution came from adaptive fast simulated annealing, its leads to faster and more stable convergence to the desired floorplan solutions. But the results are not an optimal solution. To get an optimal solution its necessary to choose effective algorithm. Combining global and local search is a strategy used by many hybrid optimization approaches. Memetic Algorithm (MA) is an evolutionary Algorithm that includes one or more local search phases within its evolutionary cycle. MA applies some sort of local search to improve the fitness of individuals in the population. The algorithm combines a hierarchical design technique, Genetic algorithms, constructive techniques and advanced local search to solve VLSI floor planning problem. MA quickly produces optimal or nearly optimal solutions for all the popular benchmark problems.

Index Terms—Floorplan Problem, Memetic algorithm, Genetic Algorithm, Delay, Cut size.

1. INTRODUCTION

Floorplanning is a critical step, as it sets up the ground work for a good layout. However, it is computationally quite hard. Very often the task of floor planning is done by a design engineer rather than a CAD tool. The process of determining block shapes and positions with area minimization objective and aspect ratio requirement is referred to as Floorplanning. A common strategy for blocks floorplanning is to determine in the first phase and then the relative location of the blocks to each other based on connection-cost criteria. In the second step, block sizing is performed with the goal of minimizing the overall chip area and the location of each block is finalized [2]. Simulated annealing (SA) has been considered a good tool for complex nonlinear optimization problems. The technique has been widely applied to a variety of problems.

However, a major disadvantage of the technique is that it is extremely slow and hence not suitable for complex optimization problems such as scheduling. There are many attempts to develop parallel versions of the algorithm.

As an optimization technique, Genetic Algorithms simultaneously examine and manipulate a set of possible solutions. The power of GA's comes from the fact that the technique is robust, and can deal successfully with a wide range of problem areas, including those which are difficult for other methods to solve.

GA's are not guaranteed to find the global optimum solution to a problem, but they are generally good at finding “acceptably good” solutions to problems. Where specialized techniques exist for solving particular problems, they are likely to out-perform GA's in both speed and accuracy of the final result. Another drawback of Genetic Algorithms is that they are not well suited to perform finely tuned search, but on the other hand they are good at exploring the solution space since they search from a set of designs and not from a single design. The GA starts with several alternative solutions to the optimization problem, which are considered as individuals in a population. These solutions are coded as binary strings, called chromosomes. The initial population is constructed randomly. These individuals are evaluated, using the floorplanning-specific fitness function. The GA then uses these individuals to produce a new generation of hopefully better solutions. In each generation, two of the individuals are selected probabilistically as parents, with the selection probability proportional to their fitness. Crossover is performed on these individuals to generate two new individuals, called offspring, by exchanging parts of their structure. Thus each offspring inherits a combination of features from both parents. The next step is mutation. An incremental change is made to each member of the population, with a small probability. This ensures that the GA can explore new features that may not be in the population yet. It makes the entire search space reachable, despite the finite population size. A 3-point and 4-point crossover works best for our circuit floorplanning problem. In this implementation we have used the Roulette Wheel parent selection method which is conceptually the simplest stochastic selection technique. Our generation replacement technique is based on replacing the most inferior member in a population by new offspring.

Genetic Algorithms are not well suited for fine-tuning structures which are close to optimal solutions. Incorporation of local improvement operators into the recombination step of a Genetic Algorithm is essential if a competitive Genetic Algorithm is desired. MAs are evolutionary algorithms (EAs) that apply a separate lo-cal search process to refine individuals (i.e) improve their fitness by hillclimbing. Under different contexts and situations, MAs are also known as hybrid EAs, genetic local searchers. Combining global and local search is a strategy used by many successful global optimization approaches, and MAs have in fact been recognized as a powerful algorithmic paradigm for evolutionary computing. In particular, the relative advantage of MAs over EAs is quite consistent on complex search spaces.
II. PROBLEM FORMULATION

Generally the floorplanning problems are such as size, Chip area, total wire length, delay of critical path, routability, noise, heat dissipation.

The modern floorplanning typically needs to pack blocks within a fixed die (outline) and additionally consider the packing with block positions as well as the interconnect constraints. The modern floorplanning problem is categories as Fixed-outline floorplanning.

A module B is a rectangle of height h_B, width w_B, and area A_B. A super-module consists of several modules, also called a sub-floorplan. A floorplan for n modules consists of an enveloping rectangle R subdivided by horizontal lines and vertical lines into n non-overlapping rectangles such that each rectangle must be large enough to accommodate the module assigned to it. In the given problem, we are given a set of hard modules and an outline-constraints are provided. The modules in the given Fixed-Outline (denoted as FO) have freedom to move while the modules outside the FO are inflexible in the final floorplan. A feasible packing is a packing in the first quadrant such that all the modules inside FO are not duplicate and overlapping. The objective is to construct a feasible floorplan R such that the total area of the floorplan R is minimized and simultaneously satisfy fixed-outline constraint. A slicing floorplan is represented by the slicing structure which can be obtained by recursively cutting a rectangle into two parts by either a vertical line or a horizontal line. As shown in Fig.2, a slicing floorplan can be represented as a slicing tree, that is, every leaf corresponds to a basic module and is marked by a number from 1 to n, and every internal node is labeled by a + or a * , corresponding to a horizontal or a vertical cut, respectively. Traversing the slicing tree in postorder, we obtain a Polish expression of length $2n - 1$ for the slicing floorplan. A wheel is a nonslicing floorplan of five modules, which cannot be obtained by recursively cutting a rectangle into two parts by either a vertical line or a horizontal line. As shown in Fig.2, a slicing floorplan can be represented as a slicing tree, that is, every leaf corresponds to a basic module and is marked by a number from 1 to n, and every internal node is labeled by a + or a * , corresponding to a horizontal or a vertical cut, respectively. Traversing the slicing tree in postorder, we obtain a Polish expression of length $2n - 1$ for the slicing floorplan. A wheel is a nonslicing floorplan of five modules, which cannot be obtained by recursively cutting a rectangle into two parts by either a vertical line or a horizontal line. As shown in Fig.3, although slicing floorplans can be sub-optimal if compared to general floorplans, empirical evidence shows that slicing floorplans can be quite efficient in packing modules tightly. It has been proved mathematically and it is achieved for packing slicing floorplans tightly [1].

![Fig 2 Slicing floorplan.](image1)

![Fig 3 Non Slicing floorplan](image2)

III. MEMETIC ALGORITHM

Memetic Algorithms (MAs) are a class of stochastic global search heuristics in which EA-based approaches are combined with problem-specific solvers. The later might be implemented as local search heuristics techniques, approximation algorithms or, sometimes, even (partial) exact methods. The hybridization is meant to either accelerate the discovery of good solutions, for which evolution alone would take too long to discover, or to reach solutions that would otherwise be unreachable by evolution or a local method alone. As the large majority of MAs use heuristic local searches rather than, e.g., approximation or exact methods, in what follows we will focus only on the local search adding for the Evolutionary Algorithm (EA). It is assumed that the evolutionary search provides for a wide exploration of the search space while the local search can somehow zoom-in on the basis of attraction of promising solutions [6]. MAs have been proven very successful across a wide range of problem domains such as combinatorial optimization there are a number of benefits that can be gained by combining the global search of EAs with local search or other methods for improving and refining an individual’s solution. However, as there are no free lunches these benefits must be balanced against an increase in the complexity in the design of the algorithm. That is, a careful consideration must be placed on exactly how the hybridization will be done. The method is based on a population of agents and proved to be of practical success in a variety of problem domains and in particular for the approximate solution of Optimization problems. Consider for example the Memetic Algorithm template. A quick glance at the algorithm allows identifying the basic structure of an EA for which hot-spots, i.e. the places where hybridization could take place, have been identified and marked with red circles [6]. Each of these hot-spots provides opportunity for hybridization. For example, the initial population could be seeded with solutions arising from sophisticated problem specific heuristics, the crossover (mutation) operator could be enhanced with domain specific and representation specific constraints as to provide better search ability to the EA. Moreover, local search could be applied to any or all of the intermediate sets of solutions (e.g. the offspring set). However, the most popular form of hybridization is to apply...
one or more phases of local search, based on some probability parameter, to individual members of the population in each generation.

MEMETIC ALGORITHM

1. Encode Solution Space
2. (a) set pop size, max gen, gen=0; (b) set cross rate, mutate rate;
3. Initialize Population.
4. While Gen < Gensize)
 - Apply Generic GA
 - Apply Local Search to Population
 - EndWhile /* end of a run */
5. Apply Final Local Search to Best Chromosome

A. Genetic Floorplan Algorithm

The overall procedure of GFA [5] is described in Fig.3. At the beginning, a set of Polish Expressions (PEs), denoted as P, is randomly generated to compose a population. The fitness of each sub-floorplan or floorplan, P, is calculated by eq. 1

\[
\text{Fitness (p)} = \frac{\sum A(B)}{A(R)}
\]

GENETIC ALGORITHM

1. Encode Solution Space
2. (a) set pop size, max gen, gen=0; (b) set cross rate, mutate rate;
3. Initialize Population.
4. While max gen, gen
 - Evaluate Fitness
 - Select (mate1,mate2)
 - if (rnd(0.1) < cross rate)
 - child = Crossover(mate1,mate2);
 - if (rnd(0.1) < mutate rate)
 - child = Mutation();
 - Repair child if necessary
 - EndFor
 - Add offsprings to New Generation.
 - gen = gen + 1
 - EndWhile
5. Return best chromosomes.

where Block Area is the area of each module and Floorplan Area is the area of the floorplan, consisted of modules. The fitness calculates the proportion of the dead area of a floorplan, that is, the more the fitness closes to zero. The threshold value \(T_s \) is initially set closes to zero, which is used to identify the quality of sub-floorplans or a floorplan. If a sub-floorplan satisfies equation (2), it is identified as a good sub-floorplan, denoted as g,

\[
\text{Fitness (p)} \leq T_s
\]

The \(T_s \) will be increased with a little value \(D \) when the best solution is not improved after a period of time. Two major evolitional operations, crossover FO and mutation, used in the algorithm are explained in more details below. They are respectively executed cr*popsize and mr*popsize times, where cr and mr are crossover rate and mutation rate and popsize is the number of Polish expressions in the population. The whole algorithm does not stop until the best solution is not improved after a given number of generations.

B. Crossover_FO

The process of the crossover operation to solve the constraint of Fixed-Outline is explained. The input is a pair of floorplan \(P_1 \) and \(P_2 \). The output is a floorplan that inherits good sub-floorplans from \(P \) and \(P \) and satisfies the fixed-outline constraint. Assume the number of gs of \(P_1 \) is larger than or equal to the number of gs of \(P_2 \). There are four steps in this operation [6].

Step 1: Extract all gs from \(P_1 \) subject to the fixed-outline constraint. That is, the width and height of good sub-floorplans in gs\(_1\) is less than or equal to width and height of the given fixed-outline, respectively.

Step 2: Extract all gs from \(P_2 \) subject to the fixed-outline constraint, and no modules in gs appeared in gs\(_2\). After that, gs\(_1\) and gs\(_2\) are put together into a Good Sub-floorplan Pool, GsP, i.e. GsP = gs\(_1\) U gs\(_2\). The set of modules that are not appeared in GsP are viewed as degenerated good sub-floorplan, denoted as dgs. Put dgs into GsP, i.e. GsP = GsP U dgs.

Step 3: Enlarge good sub-floorplans in GsP, and the process of merge is performed. The merge randomly checks vertical relation, i.e. +, and horizontal one, i.e. -. The merge of the selected pair of gs will be performed if the fitness satisfies equation (2) and the width/height satisfies the fixed-outline constraint. Remove the two merged gs and put the newly generated gs into GsP. Note that this step repeats until it can not find any gs that satisfies the fixed-outline constraint. Thereafter, we release the fixed-outline constraint to avoid the occurrence of infinite loop. This step is continued until there exists only one gs in GsP, i.e. A complete floorplan is generated.

Step 4: When a new floorplan is generated, evaluate it by equation (1). If the fitness of the new floorplan is less than or equal to one of ancestors, the new floorplan will be selected to replace the worst floorplan of ancestors.

C. Mutation

There are three possible operations for mutation. These operations are randomly selected to perform mutation in order to escape the space of local optimal search. These operations are as follows [5].

Op1: complement a relational operator to another one of a P, i.e. * to + or + to *.
Op2: exchange two modules, a subfloorplan and a module, or two sub-floorplan of a P.
Op3: rotate a module or a sub-floorplan of a P.

D. Local search:

Simulated annealing (SA) [11] is widely used for floorplanning. It is an optimization scheme with non-zero probability for accepting inferior (uphill) solutions. The probability depends on the difference of the solution quality and the temperature. The probability is typically defined by \(\min \{ \exp \frac{-AC}{T} \} \), where AC is the difference of the cost of the neighboring state and that of the current state, and T is the current temperature. In the classical annealing schedule, the temperature is reduced by a fixed ratio for each iteration of annealing.
IV. EXPERIMENTAL RESULT

To test the effectiveness of the proposed Fixed-outline floorplanning algorithm, set the maximum percentages of dead space to 15% and 10%. The expected aspect ratios R^* of the floorplans are chosen from the range with interval 0.5. Experiments were performed on a 1.6-GHz Intel Pentium4 PC using the GSRC benchmark circuit n100. The results were averaged for 50 runs for each aspect ratio. We compared with FASA based on the same platform. We have tested MA with polish expression floorplan representations, polish Table I lists the average success rates for FASA and the MA. Proposed method obtained 100% success rates of fitting into the given fixed outlines for all runs with dead space $\Gamma = 15\%$ and $\Gamma = 10\%$. In contrast, the success rates when $\Gamma = 10\%$ for MA, FASA were 30.3%, 65.5%, and 99.4% respectively. The dramatic differences reveal the effectiveness of our approach. Also, this proposed method required the least running time on average.

TABLE I: COMPARISON OF WIRELENGTH UNDER FIXED-OUTLINE CONSTRAINT FOR n100, n200, & n300 WITH ASPECT RATIO R = 1, 2, 3, 4

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Aspct Rat</th>
<th>Wire (mm)</th>
<th>Time (sec)</th>
<th>Wire (mm)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n100</td>
<td>1</td>
<td>33.56</td>
<td>30</td>
<td>32.06</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.44</td>
<td>30</td>
<td>34.39</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>35.48</td>
<td>30</td>
<td>34.23</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>36.89</td>
<td>29</td>
<td>32.74</td>
<td>27</td>
</tr>
<tr>
<td>n200</td>
<td>1</td>
<td>63.55</td>
<td>175</td>
<td>58.33</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>62.76</td>
<td>173</td>
<td>59.84</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63.70</td>
<td>180</td>
<td>61.55</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>66.31</td>
<td>176</td>
<td>63.72</td>
<td>171</td>
</tr>
<tr>
<td>n500</td>
<td>1</td>
<td>76.05</td>
<td>399</td>
<td>71.00</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>77.60</td>
<td>386</td>
<td>74.22</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>81.67</td>
<td>391</td>
<td>79.56</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>88.58</td>
<td>382</td>
<td>82.18</td>
<td>370</td>
</tr>
<tr>
<td>Comparison</td>
<td>1.06</td>
<td>1.11</td>
<td>1.00</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

V. CONCLUSION

The proposed algorithms for modern Floorplanning problems with Fixed-outline is based on the new Memetic algorithm. Experimental results have shown that MA leads to faster and stable convergence to desired Floorplan solutions. For fixed-outline floorplanning, the new cost function considering the aspect-ratio penalty drives MA more efficiently to find floorplans inside the given chip outline. The experimental results on the fixed-outline floorplanning have shown the efficiency and effectiveness of our Floorplanning algorithms; for those applications, our results out perform the related recent Works by large margins. Research along this direction is on going.

ACKNOWLEDGEMENT

It is to note here that this topic-specific article for the easy reference of VLSI Floorplanning Problem, optionally being used together with all the problems in VLSI Physical Design. Author Hameem Shanavas. I thank the management of Vivekanandha College of Engineering for Women, India to conduct his research in this arena and also he worked under the Guidance of Dr. R.K. Gnanamurthi, the Eminent Professor in India. He thank the guide for his moral support to continue the research.

REFERENCES

Hameem Shanavas. I is the research Scholar of Anna University, Coimbatore, India. He has completed his Bachelor Degree in Electronics and Communication(2006), Masters in VLSI Design(2008) and also he completed Masters in Business Administration(2009). He has published many journals and attended many Conference in National and International Level. His research area is VLSI Physical Design. email: hameemshan@gmail.com phone: 00919894594647.

Dr. R.K.Gnanamurthy. Head of Vivekanandha College of Engineering for Women. He has completed his PhD from Anna University,Chennai. He has published more than 20 journals in International Level. He is the Chief Coordinator for many Government Projects. His research areas are Mobile Computing, Networking.