
International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Abstract— Scheduling aircraft landing is a complex task

encountered by most of the control towers. In this paper, we
study the aircraft landing problem (ALP) in the multiple
runway case. We present in the first part, a mathematical
formulation of the problem with a linear and nonlinear
objective function. In the second part, we consider the static
case of the problem where all data are known in advance and we
present a new heuristic for scheduling aircraft landing on a
single runway, this heuristic is incorporated into an ant colony
algorithm to solve the multiple runway case.

Index Terms— Aircraft landing, Ant Colony Optimization,

Mathematical programming, Scheduling.

I. INTRODUCTION
When an aircraft enter in an airport radar range (or radar

horizon), it requires from air traffic control to assign it the
authorization to land, a landing time and an appropriate
runway if several runways are available. The landing time
belongs to a predefined interval called landing window,
bounded by an earliest and latest landing time. The earliest
landing time corresponds to the time at which the aircraft
could land if it use its fastest speed (which is not economical
for aircraft) while the latest landing time depends on its
autonomy of carburant.

Within the landing window, there is a target landing time
that represents a preferred landing time and which
corresponds to the time that aircraft could land if it flies at its
cruise speed which is the most economical speed of the
aircraft, it corresponds to the time announced to passengers.
Any deviation from the target time causes disturbances in the
airport. Consequently, a penalty cost is associated with each
deviation before or after the target time of an aircraft. So, the
objective is to minimize the total cost of penalties such as:

An interval of security between two successive landings on
the same runway must be respected;

1) An interval of security that must separate two
successive landings on different runways must be
respected;

2) Each aircraft must land within a predetermined time

Manuscript received September 20, 2010.
Dr. G. Bencheikh is with the Department of Economics, Faculty of Law,

Economic and Social Sciences, Meknes, Morocco (e-mail:
ghizlane_bencheikh@yahoo.fr).

Prof. Dr. J. Boukachour is with the Department of Computer Sciences, Le
Havre University Institute of Technology, Le Havre, France (e-mail:
boukachour@univ-lehavre.fr)

Prof. A. EL Hilali Alaoui is with the Department of Mathematics, Faculty
of Science and Technology, Fez, Morocco (e-mail:
ahmed.elhilali@fst-usmba.ac.ma).

window [Earliest landing time, Latest landing time].

II. PREVIOUS WORK
The aircraft landing problem (ALP) has been studied by

several researchers in different countries. Abel et al. [1]
presented a formulation of the problem as a linear mixed
program which is exactly solved by a Branch and Bound
algorithm (B&B), they present another approach by applying
Genetic Algorithm (GA), a comparison of these two methods
(B&B and GA) is presented. In [9], V. Ciesielski et al.
applied a Genetic Algorithm to the ALP in a two runway case.
In [20], A.T. Ernst et al. considered two versions of the ALP:
the static and the dynamic one. They proposed both exact
methods and heuristics for the resolution. J.E. Beasley et al.
presented in [4] a mixed linear program formulation of the
ALP in the static case; they resolved it by a method based on
relaxation of the binary variables with some additional
constraints. Computational results are presented involving up
to 50 aircraft and 4 runways. A particular case in [6] has been
presented by J.E. Beasley et al., they developed a heuristic
population for improving the aircraft landing at Heathrow
airport. They used this algorithm to solve the ALP in the
dynamic case [5]. A.T. Ernst and M. Krishnamoorthy [19]
presented two resolution methods, a Branch and Bound
method and a Genetic Algorithm to solve the ALP. In the
single runway case, J. Boukachour and A. El Hilali Alaoui [8]
presented an application of a Genetic Algorithm. In [25] H.
Pinol and J.E. Beasley presented a mathematical formulation
of the ALP with a linear and non linear objective functions;
they presented two approaches: Scatter Search and Bionomic
Algorithm, computational results are presents involving up to
500 aircraft and 5 runways. N. Baüerle et al. are interested in
reducing the waiting time of one or two runways in [3]; they
presented a model for the landing procedure of aircraft. In [2]
K. Artiouchine et al. are more interested by the complexity of
the problem, they discussed several cases solved in
polynomial time and presented a compact mixed integer
programming formulation to solve large instances of the
general problem where all time windows have the same size.
They proposed a general hybrid branch and cut framework.
In [27], M.J. Soomer and G.J. Franx studied the single
runway arrival problem, they presented a local search
heuristic specific to the problem where they assign a landing
time to each flight taking into account the cost provided by
the airline. This cost is related to the arrival delays of the
flights. M.J. Soomer and G. Koole [28] used the aircraft
landing problem to obtain an efficient and fair schedule with
little cost for airlines. Their objective is to allow the airlines
to provide different cost functions for each individual flight
which has other characterizations different to its landing

Improved Ant Colony Algorithm to Solve the
Aircraft Landing Problem

Ghizlane Bencheikh, Jaouad Boukachour and Ahmed EL Hilali Alaoui

224

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

time.
In this paper, we consider the aircraft landing problem on

one and multiple runways. We present in the first part a
mathematical formulation of the problem. In the second part,
we present a new heuristic for scheduling aircraft landing on
one runway. This heuristic is incorporated into an ant colony
algorithm which we apply to the multiple runway case.
Computational results are presented in the last section
involving up to 50 aircraft and 5 runways.

The rest of this paper is organized as follows: the third
section presents a mathematical formulation of the problem.
In the 4th section we give an adaptation of the Ant Colony
Algorithm to ALP. The 5th section presents a new heuristic to
improve the scheduled landing time on a single runway. In
section VI; we improve the ant colony algorithm by
incorporating the heuristic presented in section V. Section
VII is dedicated to computational results.

III. MATHEMATICAL FORMULATION
In the following section, we give a new mathematical

formulation of the static case of the ALP based on the
classical formulation presented in [4].

A. Notations
We use for the formulation, the following notations:

Problem’s data
N : the number of aircraft waiting to land,
R : the number of available runways,
ei : the earliest landing time for aircraft i,
li : the latest landing time of aircraft i,
tai : the target landing time for aircraft i,
Pbi: penalty cost by one unit of time for aircraft i if it lands

before its target time,
Pai : penalty cost by one unit of time for aircraft i if it lands

after its target time,
Sij : the separation time between aircraft i and aircraft j (Sij > 0,

i ≠ j), if i lands before j on the same runway
sij : the separation time between aircraft i and aircraft j (sij ≥ 0,

i ≠ j), if i lands before j on a different runways. In the
following, we suppose that matrix of separation is
symmetric (Sij = Sji and sij = sji)

Decision variables
ti : the scheduled landing time of the aircraft i
eri : the advance made by aircraft i, eri = max (0, tai – ti)
tri : the tardiness made by aircraft i, tri = max (0, ti – tai)

Note that similar variables have been used in some

previous papers [4] [25]:

B. Constraints
For each aircraft, its scheduled landing time must belong to

the landing window, [ei , li]

iii lte ≤≤ Ni ,,1 …=∀ (1)
The following constraints show that there are two cases: i

lands before j or j lands before i.
0=+ jiij xx ijNji >=∀ ;,,1, … (2)

{ }1,1−∈ijx Nji ,,1, …=∀ (3)

Note that in [4], we found similar constraints:
1=+ jiij xx ijNji >=∀ ;,,1, … (2a)

{ }1,0∈ijx Nji ,,1, …=∀ (3a)

In some cases, we can immediately decide if xij =1 or xij =
-1. For example, if li < ej then xij = 1 and xji = -1.

The separation constraints must be respected:
()

ijNji
zszStxtx ijijijijiijjij

>=∀

−++≥

;,,1,

1...

…
 (4)

Let (i, j) be a pair of aircraft such as i < j and suppose that
aircraft i and j land on the same runway, i.e. zij = 1, (1− zij =
0)
• If the aircraft i lands before aircraft j then xij = 1, the

constraint (4) becomes :

ijij Stt +≥

• If the aircraft j lands before aircraft i then xij = -1, the
constraint (4) becomes :

ijij Stt +−≥−

Since Sij = Sji, (The matrix (Sij) is symmetric), we have:

jiji Stt +≥

We can conclude that the two situations, aircraft i lands
before aircraft j or j lands before i, can be expressed by the
constraint (4).

In [25], H. Pinol and J. E. Beasley have considered the
following constraint:

()
ijNji

xMzszStt jiijijijijij

≠=∀

−−++≥

;,,1,

.1.

…
 (4a)

Where M is a great positive number and

Let (i, j) be a pair of aircraft such as i ≠ j and suppose that

aircraft i and j land on the same runway, i.e. zij = 1 (1 − zij = 0)
• If the aircraft i lands before aircraft j then xij = 1, the

constraint (4a) becomes :

ijij Stt +≥

• If the aircraft j lands before aircraft i then xij = 0, the
constraint (4a) becomes :

MStt ijij −+≥

We can observe that our mathematical formulation of the
last constraint is an improvement of the constraint (4a). In the
constraint (4a), we must consider N² - N relations (expressed

⎩
⎨
⎧

−
=

otherwise1
j before lands iaircraft if1

 ijx

⎩
⎨
⎧

=
otherwise0

rrunway on lands iaircaft if1
 iry

⎩
⎨
⎧

=
otherwise0

runway same on the land j and i aircarfts if1
 ijz

⎩
⎨
⎧

=
otherwise

j before lands iaircraft if

0
1

xij

⎩
⎨
⎧

=
otherwise0

rrunway on lands iaircaft if1
 iry

⎩
⎨
⎧

=
otherwise0

runway same on the land j and i aircarfts if1
 ijz

⎩
⎨
⎧

=
otherwise0

j before lands iaircraft if1
 ijx

225

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

by ∀ i, j = 1,…, N; i ≠ j). In our formulation, constraint (4)
considers only (N² - N)/2 relations (expressed by∀ i, j = 1, …,
N; i < j).

The deviation before and after target time are expressed by
the constraints (5), (6), (7), (8) and (9) below:

iii ttaer −≥ Ni ,,1 …=∀ (5)

iii etaer −≤≤0 Ni ,,1 …=∀ (6)

 iii tater −≥ Ni ,,1 …=∀ (7)

 iii taltr −≤≤0 Ni ,,1 …=∀ (8)

 iiii trertat +−= Ni ,,1 …=∀ (9)
We introduce the following constraint to express the fact

that an aircraft must be landed on one runway:

∑
=

=
R

r
iry

1
1 Ni ,,1 …=∀ (10)

The matrix (zij) is symmetric
zij = zji ijNji >=∀ ;,,1, … (11)

Constraints (12) link the variables yir, yjr, and zij:
1−+≥ jririj yyz

ijNji >=∀ ;,,1, … ; Rr ,,1…=∀ (12)

Remark:
However, if one aircraft i or j lands on runway r and the

other doesn’t, we must have zij = 0, this isn’t guarantied by
(12), we can introduce the following constraint:

 (12a)
If :
(yir, yjr) = (0,0) then 0 ≤ zij ≤ 1
(yir, yjr) = (0,1) then 0 ≤ zij ≤ 0
(yir, yjr) = (1,0) then 0 ≤ zij ≤ 0
(yir, yjr) = (1,1) then 1 ≤ zij ≤ 1

C. Objective function
The objective is to minimize the penalty cost of deviation

between the actually landing time of all aircraft and their
target landing times.

⎟
⎠

⎞
⎜
⎝

⎛ +∑
=

N

i
iiii PrtrPaerMin

1
.. (13)

The mathematical program in this formulation is to
minimize (13) such as constraints (1) - (12)

If we suppose that intervals of security are symmetric, our
mathematical program is to minimize (13) under constraints
(1)-(3), (4a), (5)-(12)

In [25], another objective function is defined. The aim is to
land the aircraft as soon as possible to their earliest landing
time. This is expressed by the following function:

In this paper, we express this objective function by:

() ()2

1

2
i

N

i
i trerMax ∑

=

− (14)

The complete mathematical program is to maximize this
objective function under constraints (1) - (12). In this case,
the goal is to promote the advance of aircraft landing in order
to use efficiently the runway.

IV. ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) was first presented by

Marco Dorigo in 1992 [14], who was inspired by the collect
behavior of natural ants. Based on this process, ant colony
algorithm consists on a number of artificial ants in charge to
find the optimal solution of a combinatorial problem and
communicate through pheromones [17]. The Ant Colony
Optimization has been initially applied on traveling sales
man problem (TSP) to find the shortest Hamiltonian path in a
complete graph [15], [16]. Each ant constructs its own path
and puts a quantity of pheromone according to its solution
quality. The shortest path is the one with the greater quantity
of pheromone. ACO was applied on both static and dynamic
combinatorial problems including machine scheduling [24],
job shop scheduling [11], [21], vehicle routing [13], [26], [7],
graph coloring [10], knapsack problem [23], etc.

In this section, we propose an adaptation of ACO on the
Aircraft landing problem in the static multiple runway case;
this algorithm can be adapted to the dynamic case to take into
account eventual uninspected changes in data such as the
closing of a runway or the cancellation of a flight.

A. Graphical representation
In order to apply the Ant colony Algorithm, we define the

following graphical representation of the problem. This is
based on a bi-level graph. In the first level, we fix the
available runways and in the second level the aircraft. We add
two dummy nodes D and F corresponding respectively to the
beginning and the end of graph.

Fig.1. Graphical Representation of the problem

B. Construction of a solution
An ant begins its trajectory by the beginning of the graph

corresponding to the node dummy D. First, it chooses the
runway where it will insert the next aircraft; this choice may
depend on the charge on the runway, or the runway that will
be free sooner. After the choice of the runway, the ant has to
choose the next aircraft to land on this runway; this choice
depends essentially on the priority of the aircraft compared to
the other aircraft and the memory of the ant colony. This

() ()11..
 ,...,1 , , ,...,1,

−−+≤≤
=∀>=∀

jrirjririjjrir yyyyzyy
RrijNji

timelanding target its from timelandingaircraft theofdeviation
otherwise

0d if
2

i
2

1

i

i

i
i

N

i
i

d
d
d

D

where

DMax

⎪⎩

⎪
⎨
⎧

+

≥−
=

∑
=

226

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

process is repeated until there is no aircraft available to land.

Runway selection
The probability rule to select a runway r, from the

beginning of the graph D can be expressed by the following
equation:

⎪
⎩

⎪
⎨

⎧
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= =

otherwiser

qqif
rrunwaythetoaffected

aircraftsofnumber
P Rr

k
Dr

0

0
,...,1
minarg ≺

 (eq. 1)
Where:
- D represents the node corresponding to the beginning of

the graph
- 0 < q0 < 1 is a constant of the algorithm to ensure the

diversification
- q is a value taken randomly into [0,1]
- r0 is an index chosen randomly in {1, …, R}

In this case, we select the runway with the smallest number
of aircraft, without taking into consideration the intervals of
security. This probability rule can be useful if the intervals of
security are the same for all aircraft but actually, they depend
of the nature of aircraft. That’s why, we propose another
probability rule which selects the runway according to its
availability time to receive new aircraft. It is expressed in this
paper by the following equation:

()
⎪⎩

⎪
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ +

= ∈=

otherwiser

qqifSx
P ji

r

CandidatejRr
k

Dr
i

k

0

0
,...,1

00
minminarg ≺

 (eq. 2)
Where:
- Candidatek is the ant’s k list of aircraft waiting to land
- i0 the last aircraft affected to the runway r
- r

ix
0
is the landing time of the last aircraft affected to the

runway r for the ant k

 Aircraft selection
After choosing a runway r, the ant has to choose an aircraft

for this runway. This choice depends on two parameters. The
first is the priority of the aircraft such as the earliest landing
time, target time, penalty cost of the aircraft. The second is
the cost calculated after we assign a landing time to the
aircraft using the assignment algorithm presented in the next
section. A weight of these two parameters is the “information
heuristic” of the ant colony algorithm.

()()
21

1)(_
1.

1Priority
1

ββ

η ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
jpenaltyCostjrj

Where:
- Priority (j) : The priority of the aircraft j,
- Cost_penalty(j) : Penalty cost of the aircraft j
- β1 and β2 : Coefficients of weighting

The other parameter that influences an ant’s choice is the
colony memory (i.e, pheromone trails noted τij initially fixed
on a value τ0). To summarize, the probability rule to choose
an aircraft is expressed by:

()
() ()

() ()

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

= ∑
otherwise

Candidatejif
tp

k

l
rlrl

rjrj

k
rj

 0

.

.
βα

βα

ητ
ητ

(eq. 3)
α and β define the relative importance of the pheromone

trace and the visibility of the ants.

Assignment of aircraft landing times
This step is to assign landing times to aircraft while

respecting the two constraints:
− The landing time must be within the landing widow [ei, li]
− The interval of security must be respected

We have used two heuristics to assign aircraft landing
times. The first heuristic assigns the target landing time if it
respects the intervals of security between the previous
aircraft, otherwise, it assigns the earliest time which respects
the intervals of security. It can be expressed as follows:

()()ijiOijj Sttat +=
∈

max,max

Where:
O : Set of aircraft which have previously been assigned a

landing time.
The second heuristic used in this paper just cares about the

intervals of security between the other aircraft and respecting
the landing time window.

()()ijiOijj Stet +=
∈

max,max

Both expressions are used to assign a landing time to
aircraft in a single runway, what explain the use of the matrix
of security (Sij).

Evaporation of the pheromone trail
The pheromone trail is updated at each iteration end

according to the following equation:
)()()1(ttt ijijij τρττ Δ+=+ (eq. 4)

Where
- ρ is a coefficient of evaporation (ρ < 1 to avoid an unlimited

accumulation of trace)
-

ijτΔ is the quantity of trace left on the edge (i, j) by the
colony at the end of an iteration:

⎪⎩

⎪
⎨
⎧ ∈

=Δ
otherwise

solutionBestjiifQ
ij

0

),(
Cτ

Q : Updating constant
C : Penalty cost of the best solution in iteration t
Best solution : The path with the smaller penalty cost
We can summarize the ant colony algorithm as follows:
Ant Colony Algorithm adapted to the aircraft landing
problem
1. Initialize the matrix of pheromone trails
2. For each ant k

i. Initialize the first aircraft of each ant’s runway
ii. Initialize the list of candidate aircraft

iii. Repeat
- Select a runway r according to (eq. 2)
- Select an aircraft according to (eq. 3)
- Insert the aircraft j in the list of aircraft affected to

the runway r and delete it from the candidate list
- Assign a landing time to the aircraft j

227

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

- Return to the beginning of the graph
While the candidate list is not empty

3. Update the pheromone trail according to (eq. 4)
4. Repeat steps 2, 3 and 4 until verify the stopping criterion

V. NEW HEURISTIC TO IMPROVE SCHEDULING AIRCRAFT
LANDING TIMES

We introduce a new heuristic to improve the computed
aircraft landing time in order to minimize the total penalty
cost, in the single runway case; this heuristic will be
incorporated into the ant colony algorithm which is applied
for the multiple runway case.

Improvement algorithm
The improvement algorithm consists on reducing the total

penalty cost made by all aircraft. The algorithm is applied on
a sequence of aircraft which has already been assigned
landing times, and it adjusts the landing time in order to
reduce the total penalty cost. Before applying the algorithm,
we have to set an order between aircraft and assign for them
landing times.

Aircraft sequencing
The order between aircraft is set up according to priority

rules which are based on the variables:
- ei : The priority is given to the aircraft which has the

sooner earliest landing time; this priority rule can be used
if we are interested by the maximal exploitation of the
runway.

- tai : The priority is given to the aircraft which has the
earliest target landing time; We can choose this priority if
we want to minimize the advance or late made by aircraft

- li : The priority is given to the aircraft which has the
earliest latest landing time, in order to avoid that, we
assign a landing time after the latest landing time of an
aircraft.

- ei /Pbi : The priority is given to the aircraft which has the
soonest earliest time and which causes the most important
advance penalty.

- li /Pai : The priority is given to the aircraft which has the
soonest latest time and which causes the most important
lateness penalty.

- tai /Pbi+Pai : The priority is given to the aircraft which
has the soonest target time and which causes the most
important advance and lateness penalty.

- 1 /Pbi+Pai : The priority is given to the aircraft which
causes the most important advance and lateness penalty.

To assign landing times to the aircraft we use the same
heuristics presented above.

Adjusting aircraft landing times
The adjusting landing time is the most important step in the

improvement algorithm; the aim is to reduce the total cost of
penalty caused by all aircraft. Based on the landing times
assigned to aircraft, we modify the landing time of a selected
aircraft i, as follows: if the aircraft i lands in advance (resp.
late), we increase (resp. reduce) its landing time by one unit
of time, in this case we have to check the feasibility of the
solution: the new landing time must respect the interval of
security between the next (resp. previous) ones, if it is not the
case, we have to increase (resp. reduce) the landing times of
next (resp. previous) aircraft to keep the respect of intervals

of security. We have to check that the new landing time
should not be outside of the landing window; in this case we
cancel the increase (resp. reduce) and keep the last feasible
solution.

Remark:
If we increase (resp. reduce) the aircraft landing time, we

check the interval of security with the next (resp. previous)
aircraft only, because it always respect the intervals with the
previous (resp. next) aircraft.

We can define two versions of the improvement heuristic:
− Improving the landing aircraft time during the

initialization (Parallel improving): in this algorithm, we
adjust the landing time of each aircraft during its time
assignment.

− Improving the aircraft landing time after the initialization
(Global improving): in this algorithm, we assign the
landing time to all aircraft, after what, we adjust the
landing time of the aircraft which increases the penalty
cost. We apply the adjustment a number of iterations
where in each iteration an aircraft is selected by the
transition rule :

j ൌ ൞ argmaxk א ሺ1, ڮ , Nሻሾcost penaltyሺa୩ሻሿ if the last change was fruitfulj଴ otherwise

 (eq. 5)
Where:

- cost_penalty(ak) corresponds to the penalty cost made by
aircraft k

- j0 an aircraft selected randomly
We can summarize both algorithms as follows:

Parallel improving of aircraft landing times:
Let P be the list of aircraft set up according to a priority rule
1. tP1 taP1
2. For i from 2 to N

XPi max(ePi (or tapi), Oj
max

∈ (tj+Sj,Pi))

 end for
3. Repeat

if(tPi > taPi)
Reduce the landing time by 1 unit of time

else
 Increase the landing time by 1 unit of time

end if
if(the solution is unfeasible)

 Reject the change and keep the last feasible solution
 break

end if
while (there is decrease of penalty cost)

Global improving of aircraft landing times:
Let P be the list of aircraft set up according to a priority rule
1. tP1 taP1
2. For i from 2 to N
 tPi max(ePi (or tapi) ,

Oj
max

∈
 (tj+Sj,Pi)

 end for
3. Select the aircraft i0 causing the greater penalty cost
4. For k number of iterations
 if(ti0>tai0)
 Reduce the landing time by 1 unit of time
 else
 increase the landing time by 1 unit of time

228

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

 end if
if(the solution is unfeasible)

 Reject the change and keep the last feasible solution
 continue
 end if
 Select a new aircraft according to (eq. 5)
 End For

We have tested both algorithms on instances involving 10
to 50 aircraft on one runway. We remember that these
algorithms are tested on the single runway case in order to
incorporate it in the Ant Colony Algorithm for the multiple
runway case. The computational results are presented in table
3 and table 4 in section VII, we have tested the priority rules
and both affectation heuristic.
A use case of the parallel improving:

Let be 10 aircraft waiting to land where the landing
windows, the penalties and the security intervals are
presented by the following tables:

TABLE I. LANDING WINDOWS, TARGET LANDING TIME AND PENALTY COST

1 2 3 4 5 6 7 8 9 10
1 0 3 15 15 15 15 15 15 15 15
2 3 0 15 15 15 15 15 15 15 15
3 15 15 0 8 8 8 8 8 8 8
4 15 15 8 0 8 8 8 8 8 8
5 15 15 8 8 0 8 8 8 8 8
6 15 15 8 8 8 0 8 8 8 8
7 15 15 8 8 8 8 0 8 8 8
8 15 15 8 8 8 8 8 0 8 8
9 15 15 8 8 8 8 8 8 0 8
10 15 15 8 8 8 8 8 8 8 0

TABLE II. TIME BETWEEN SUCCESSIVE ARRIVAL AIRCRAFT

Aircraft 1 2 3 4 5 6 7 8 9 10
Earliest landing time 129 195 89 96 110 120 124 126 135 160
Target landing time 155 258 98 106 123 135 138 140 150 180
Latest landing time 559 744 510 521 555 576 577 573 591 657

Penalty before target time 10 10 30 30 30 30 30 30 30 30
Penalty after target time 10 10 30 30 30 30 30 30 30 30

1. The first step is to set up an order between aircraft

according to a priority rule. Suppose that the priority rule is
the earliest target time. The order is as follows:
Aircraft(ai) 3 4 5 6 7 8 9 1 10 2

2. The second step is to assign a landing time to the first
aircraft in the list (aircraft 3 in our case) by one of the
assignment heuristic, let’s apply the first one i, e.:

()()ijiOijj Sttat +=
∈

max,max

The aircraft 3 is assigned its target time which is 98 :
Aircraft (ai) 3 4 5 6 7 8 9 1 10 2

Landing Times
(ti)

98

3. For the second aircraft in the list: (aircraft 4)
- The landing time calculated by the assignment heuristic

is 106 which is the max (98+8, 106)
ai 3 4 5 6 7 8 9 1 10 2
ti 98 106

- Adjusting time: The aircraft 4 has landed at its target time,
so we don’t have to adjust its landing time.

For the aircraft 5: the landing time calculated by the same
assignment heuristic: 123 is also the target landing time

ai 3 4 5 6 7 8 9 1 10 2
ti 98 106 123

For the aircraft 6, the calculated landing time is 135:
3 4 5 6 7 8 9 1 10 2

98 106 123 135

For the aircraft 7, the calculated landing time is: 143 is
greater than its target landing time, so we have to adjust time:
143 is greater than 138, then we reduce the landing time by 1
unit, so the new landing time is 142. We have to check the
feasibility of the solution:

ai 3 4 5 6 7 8 9 1 10 2
ti 98 106 123 134 142

The landing time of aircraft 6 is reduced by 1 unit to keep
the feasibility of solution. If the penalty cost of aircraft 6 were

10 then the adjustment time will reduce the penalty cost from
5*30 = 150 to 4*30 + 1 * 10 = 130. On the contrary, if the
penalty cost of aircraft 6 was 40, then the adjustment will
increase the total penalty cost, in this case, we reject the new
landing times and keep the last ones.
For aircraft 8: the assigned landing time (after applying the
adjustment) is
ai 3 4 5 6 7 8 9 1 10 2
ti 98 106 122 130 138 146

For aircraft 9:
ai 3 4 5 6 7 8 9 1 10 2

ti 98 106 121 129 137 145 153

For aircraft 1:
3 4 5 6 7 8 9 1 10 2

98 106 120 128 136 144 152 167

For aircraft 10:
3 4 5 6 7 8 9 1 10 2

98 106 118 126 134 142 150 165 180

For aircraft 2:
3 4 5 6 7 8 9 1 10 2

98 106 118 126 134 142 150 165 180 258

The total penalty cost is: 700 which coincide with the
optimal solution calculated by ILOG Cplex applied on the
linear program of the problem.

VI. IMPROVED ANT COLONY ALGORITHM (IACA)
To improve the ant colony algorithm, we combine it with

the improvement algorithm presented above. This algorithm
is useful for scheduling aircraft landing times in order to
minimize the total penalty cost. We called this combination
“Improved Ant Colony Algorithm” (IACA).

The Improved Ant Colony Algorithm is illustrated as
follows:

229

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

 Improved Ant Colony Algorithm

Dynamic case:

This algorithm can be adapted to the problem in the
dynamic case where we consider two forms of effects: the
cancellation of a flight and the closing of a runway. This

adaptation is in the level of the graphical representation by
the addition or delete of aircraft or runway. Ant Colony
Optimization is a very robust heuristic which is known by its
adaptation to the problems environment, whether there are
changes or not.

VII. COMPUTATIONAL RESULTS
In this experiment we used a 1.6 GHz Intel Pentium M

processor, 1 Go RAM. First, we present results of the
improvement algorithms presented in section V. These
algorithms have been tested on benchmarks involving up to
50 aircraft available on line in
http://people.brunel.ac.uk/~mastjjb/jeb/info.html, where we
fixed the number of runway at 1 runway. Secondly, we
present results of ant colony algorithm and the improved ant
colony algorithm using the same benchmarks and varying the
number of runways from 1 to 5 runways.

A. Improvement algorithm
The table III presents a comparison between several

priority rules to reduce total penalty cost (Parallel improving).
The first column represents the benchmarks, in the second
column we find the number of aircraft.

We note that the lower penalty cost is given by the second
(Ti) and 5th priority rule (2*Ti / (Pai+Pri)) which are based on
the target time Ti and calculation requires at least 0.05 second
of CPU time.

The second algorithm (Global improving) was run 2000
iterations. Table IV presents the total penalty cost calculated
by priority rules.

As observed in the table III. The lower penalty cost is
given by the priority rules based on target time (Ti).

Looking over those tables, we argue that results given by
the first algorithm (parallel improving) are better than the
second one in terms of CPU time and penalty cost. This is the
reason why we choose this algorithm to incorporate into the
ant colony algorithm.

TABLE III. COMPUTATIONAL RESULTS OF THE PARALLEL IMPROVING

TABLE IV. COMPUTATIONAL RESULTS OF THE GLOBAL IMPROVING

Benchmark N Ei
CPU
(s) Ti

CPU
(s) Li

CPU
(s)

2 /
(Pai+Pri)

CPU
(s)

2*Ti /
(Pai+Pri)

CPU
(s) Ei / Pai

CPU
(s) Li / Pri

CPU
(s)

1 10 1280 0.07 700 0.06 3470 0.06 880 0.06 880 0.04 880 0.06 1090 0.08

2 15 1800 0.08 1500 0.08 1820 0.02 2330 0.05 1480 0.08 1480 0.07 1500 0.08

3 20 4960 0.1 4840 0.07 8560 0.03 5120 0.05 1070 0.08 1160 0.07 2590 0.08

4 20 5000 0.13 2780 0.05 6630 0.03 4740 0.02 2610 0.08 2860 0.07 4640 0.08

5 20 7690 0.08 6970 0.02 8390 0.12 6220 0.03 5050 0.03 5060 0.07 5320 0.07

6 30 56816 0.21 56816 0.08 56816 0.04 85462 0.03 44293 0.04 44296 0.04 44279 0.15

7 44 51386 0.16 51386 0.10 51386 0.10 51386 0.05 37374 0.03 45807 0.07 51147 0.07

8 50 25355 0.12 3150 0.06 42795 0.04 182310 0.05 103490 0.04 106330 0.08 136805 0.16

Benchmark N Ei
CPU
(s) Ti

CPU
(s) Li

CPU
(s)

2 /
(Pai+Pri)

CPU
(s)

2*Ti /
(Pai+Pri)

CPU
(s) Ei / Pai

CPU
(s) Li / Pri CPU (s)

1 10 1280 0.0 700 0.0 3470 0.0 930 0.0 930 0.0 930 0.0 1140 0.0

2 15 1810 0.0 1550 0.0 1830 0.0 2290 0.0 1530 0.0 1530 0.0 1550 0.0

3 20 2000 0.0 1820 0.05 8680 0.0 7170 0.0 840 0.0 900 0.0 2730 0.0

4 20 5410 0.0 3620 0.0 15140 0.0 4420 0.0 3620 0.0 3010 0.0 4960 0.0

5 20 9810 0.0 6730 0.0 10370 0.0 4390 0.0 3040 0.0 3220 0.0 3160 0.0

6 30 67525 0.0 67525 0.0 67525 0.0 116972 0.0 46270 0.0 46270 0.0 43670 0.0

7 44 39058 0.0 39058 0.0 39058 0.05 79946 0.05 49528 0.0 42738 0.0 50793 0.05

8 50 19055 0.0 2600 0.0 113580 0.0 271650 0.0 91185 0.0 103650 0.0 147940 0.0

Initialization

Runway selection (eq. 2)

Aircraft selection (eq. 3)

Assignment of landing time

Adjustment of the landing time

No more aircraft
to land

Update the pheromone trails according to (eq. 4)

Maximum
number of
iterations

Optimal Solution

No

Yes

No

Yes

230

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

B. Ant colony algorithm
Table V shows values for the linear objective obtained by

applying the Ant Colony Algorithm and the Improved Ant
colony algorithm (Parallel improving mixed with the Ant
colony algorithm). The 4th column “Optimal” presents the
optimal values that we obtained by applying the software
ILOG Opl Studio. The column “ACA” presents the results
obtained by applying the ant colony algorithm without
improving solution, the column IACA presents the results
obtained by the improved ant colony algorithm.

The parameters which have given the best solutions are as
follows:

 N R Optimal ACA CPU
(s) IACA CPU

(s)
1 10 1 700 1150 0.49 700 0.00
 2 90 120 0.49 90 0.05
 3 0 0 0.43 0 0.0
2 15 1 1480 1840 0.93 1480 5.87
 2 210 210 0.82 210 0.6
 3 0 0 0.71 0 0.4
3 20 1 820 2540 1.42 820 8.35
 2 60 60 1.31 60 11.26
 3 0 0 1.20 0 9.28
4 20 1 2520 4820 1.42 2520 13.73
 2 640 680 1.26 640 7.91
 3 130 130 1.20 130 6.42
 4 0 0 1.09 0 5.82
5 20 1 3100 6260 1.42 3100 8.07
 2 650 1210 1.31 730 2.36
 3 170 330 1.2 170 7.03
 4 0 0 1.09 0 3.24
6 30 1 24442 64001 3.18 24442 8.08
 2 554 2394 2.74 837 3.75
 3 0 240 2.58 0 12.19
7 44 1 1550 53342 6.64 1550 90.22
 2 0 160 5.54 0 55.16
8 50 1 1950 13840 8.02 2185 98.48
 2 135 835 10.01 165 168.14
 3 0 195 9.72 15 108.24

Number

of iterations α β1 β2 ρ improvement
algorithm

1000 1 3 5 0.7 Parallel improvement

TABLE V Shows a Remarkable Improvement in Results

After the incorporation of the local search heuristic
(improvement algorithm) with the ant colony algorithm.
Bold values are those coincident with optimal solutions.
They represent 80% of the total number of tests, whereas
before the incorporation of the improvement algorithm the
percentage of optimal cost does not exceed 32%.

The following figure illustrates the improvement of the
hybrid algorithm over the ant colony algorithm.

However, the incorporation of the local search heuristic in
the ant colony algorithm greatly increases the execution time
compared to the ant colony algorithm, because additional
calculations made at the time of assignment the landing time
of each aircraft.

Fig. 2. Comparison between colony algorithm and improved ant colony

algorithm

The following figure illustrates the optimal values and the
values obtained by the improved ant colony algorithm
(IACA).

Fig. 3. Optimal values and obtained IACA values

We can observe that the graph representing the optimal
values is almost identical to the graph representing the
solution obtained by our algorithm. In 80% of cases, the
optimal solution was achieved by our hybrid algorithm.

Table VI presents the computational results by applying
the Improved Ant Colony Algorithm for the nonlinear
objective where there is to maximize the advance made by
aircraft.

The 3rd column “Max” presents the maximal values given
in [25].

TABLE VI. COMPUTATIONAL RESULTS FOR THE NONLINEAR OBJECTIVE

 N R Max IACA CPU
(s)

1 10 1 4849 4849 0.82
 2 5924 5924 0.49
 3 6185 6185 0.44
 4 6237 6237 0.33
2 15 1 18337 17688 1.76
 2 19948 19915 0.93
 3 20078 20078 0.82
3 20 1 35632 27740 4.78
 2 38524 38524 1.59
 3 38664 38664 1.32
4 20 1 20001 13732 5.22
 2 22888 22682 2.31
 3 23659 23659 1.92
 4 23955 23955 1.65
 5 24140 24140 1.48
5 20 1 19381 15322 3.75
 2 26021 25926 2.03
 3 26495 26495 1.59
 4 26699 26666 1.78
 5 26732 26732 1.58
6 30 1 -2847013 -15552753 7.96
 2 -8943 -130388 5.88
 3 0 -3785 4.84
7 44 1 -23266 - -

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25

Pe
na

lty
 c

os
t

A
C
A

0

5000

10000

15000

20000

25000

0 5 10 15 20 25

Pe
na

lty
 C

os
t

Optimal values

IACA

231

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

 2 644749 429731 17.28
 3 646432 636507 10.58
8 50 1 728837 442716 44.21
 2 797116 727488 16.06
 3 799417 776492 16.52

For the instance of 44 aircraft and one runway, our

algorithm could not give a feasible solution.
The following figure illustrates the values given by table

VI.

Fig. 4. Maximal solution value compared to obtained values given by IACA

We observe that solutions given by our algorithm are

comparable to maximal values given by [25]. They coincide
with the maximum values known in 48% of the total number
of instances. We note that the deviation from the maximal
solution does not exceed 10% for 32% solutions, the
deviation of 20% of solutions do not exceed 40%, 8% and
finally the solutions are far from the maximum solutions.

VIII. CONCLUSION
In this paper, we proposed, first, a new heuristic for

scheduling aircraft landing times on a single runway from an
order determined by a priority rule. We compared several
priority rules for test our heuristic. Secondly, we adapted the
ant colony algorithm to our problem in the multiple runway
case, we have combined with the new heuristic in the
assignment of aircraft landing times level for each runway.

Our algorithm has been tested on instances available
online http://people.brunel.ac.uk/ mastjjb ~ / jeb / info.html,
involving 10 to 50 aircraft and 1 to 5 runways. We compared
our results with optimal solutions obtained by ILOG Cplex.
In the linear objective case, our algorithm provides solutions
that coincide with the optimal solutions in 80% of the total
number of instances, with an average deviation of 5% from
the optimal solutions for 20% of instances that remain.
Regarding the nonlinear objective, optimal solutions are
unknown, we compared our solutions with those given in
[25]. In 48% of the tests we made, the solutions provided by
IACA coincide with the maximum values known.

REFERENCES
[1] J. Abela, D. Abramson, M. Krishnamoorthy, A.De Silva and G. Mills,

“Computing optimal schedules for landing aircraft”, Proceeding 12th
National ASOR Conference, Adelaide, Australia, 71 – 90, 1993.

[2] K. Artiouchine, P. Baptiste, C. Dürr, “Runway sequencing with
holding patterns”, European Journal of Operational Research, 189 (3),
pages 1254-1266, 2008.

[3] N. Bauerle, O. Engelhardt-Funk, and M. Kolonko, “On the waiting
time of arriving aircratfs and the capacity of aiports with one or two

runways”, European Journal of Operational Research, 177 (2),
1180-1196, 2007.

[4] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha and D. Abramson,
“Scheduling aircraft landings – The static case”, Transportation
Science, 34, 180 – 197, 2000.

[5] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha and D. Abramson,
“Displacement problem and dynamically Scheduling aircraft landing”,
Journal of the Operational Research Society 55, 54-64, 2004

[6] J. E. Beasley, J. Sonander, and P. Havelok, “Scheduling aircraft
landing at London Heathrow using a population heuristic”, Journal of
the operational Research Society, 52, 483 – 493, 2001.

[7] J. E. Bell and P. R. McMullen, “Ant colony optimization techniques
for the vehicle routing problem”, Advanced Engineering Informatics
18, 41-48, 2008

[8] J. Boukachour and A. Elhilali Alaoui, “A Genetic Algorithm to solve a
Problem of Scheduling Plane Landing”, Advanced Computer Systems
part II, 257 - 263, 2002.

[9] V. Ciesielski and P. Scerri, “Real Time Genetic Scheduling of Aircraft
Landing Times”. In D.Fogel, editor, Proceeding of the 1998 IEEE
International Conference on Evolutionary Computation (ICEC98),
360 – 364. IEEE, New York, USA, 1998.

[10] D. Costa and A. Hertz, “Ants can colour graphs”, Journal of the
Operational Research Society 48, 295-305, 1997.

[11] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant system for
job shop scheduling”, Belgian Journal of Operations Research,
Statistics and Computer Science (JORBEL), 34, 39-53, 1994.

[12] J. Dréo, A. Pétrowski, P. Siarry and E. Taillard : “Métaheuristiques
pour l’optimisation difficile”. Eryolles 2003.

[13] A. V. Donati, R. Montemanni, N. Casagrande, A. E. Rizzoli, L. M.
Gambardella, “Time dependent vehicle routing problem with a multi
ant colony system”, European Journal of Operational Research, 185
(3), 1174-1191, 2008.

[14] M. Dorigo : “ Optimization, Learning and Natural Algorithms”. PhD
thesis, Dip. Elettronica e Informazione, Politecnico di Milano, Italy,
1992.

[15] M. Dorigo and L. M. Gambardella, “Ant colonies for the traveling
salesman problem”, BioSystems 43, 73-81, 1997.

[16] M. Dorigo and L. M. Gambardella, “Ant Colony System: A
Cooperative Learning Approach to the Traveling Salesman Problem”,
IEEE Transactions on Evolutionary Computation 1, 53-66, 1997.

[17] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System:
Optimization by a colony of cooperating agents”, IEEE Transactions
on Systems, Man, and Cybernetics–Part B, 26 (1), 1-13, 1996.

[18] N. Durand : “Algorithmes génétiques et autres outils d’optimisation
appliqués à la gestion du trafic aérien”, 2004.

[19] A.T. Ernst and M. Krishnamoorthy, “Algorithms for Scheduling
Aircraft Landing”, CSIRO Mathematical and Information Sciences
Private Bag 10, Clayton South MDC, Clayton VIC 3169, Australia.
2001.

[20] A.T. Ernst M. Krishnamoorthy and R.H. Store, “Heuristic and exact
algorithms for scheduling aircraft landings”, Networks 34; 229-241,
1999.

[21] J. Heinonen, F. Pettersson, “Hybrid ant colony optimization and
visibility studies applied to a job-shop scheduling problem”, Applied
Mathematics and Computation 187 (2), 989-998, 2007.

[22] G. Jung and M. Laguna, “Time segmenting heuristic for an aircraft
landing problem”, leeds school of Bisness, Univrsity of Colorado,
Boulder, CO 80309, USA. working paper, 2003.

[23] M. Kong, P. Tian,Y. Kao, “A new ant colony optimization algorithm
for the multidimensional knapsack problem”, Computers &
Operations Research, 35 (8), 2672-2683, 2008.

[24] C. J. Liao, H. C. Juan, “An ant colony optimization for single-machine
tardiness scheduling with sequence-dependent setups”, Computers &
Operations Research 34, 1899-1909, 2007.

[25] H. Pinol and J. E. Beasley, “Scatter Search and Bionomic Algorithms
for the Aircraft Landing Problem”, Europeen Journal of Operational
Research, 127 (2), 439-462, 2006.

[26] M. Reimann, K. Doerner, R. F. Hartl, “D-Ants: Savings Based Ants
divide and conquer the vehicle routing problem », Computers &
Operations Research 31, 563–591, 2004.

[27] M.J. Soomer and G.J. Franx, “Scheduling aircraft landings using
airlines’ preferences”, European Journal of Operational Research, vol.
190 (1), 277-291, 2008.

[28] M.J. Soomer and G. Koole, “Fairness in the Aircraft Landing
Problem”, submitted paper, VU University, De Boelelaan 1081a, 1081
HV Amsterdam, the Netherlands, 2008.

Ghizlane Bencheikh is an Assistant Professor at the Department of
Economics, Faculty of Law, Economic and Social Sciences, Meknes,

-1600000

-1400000

-1200000

-1000000

-8000000

-6000000

-4000000

-2000000

0

2000000

0 5 10 15 20 25

Pe
na

lty
 c

os
t

Max

IACA

232

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Morocco. She is a member of the Laboratory Modeling and Scientific
Computing of the Faculty of Sciences and Techniques of Fez, Morocco and
the Laboratory CERENE of University of Le Havre, France. She works on
scheduling problems and metaheuristics.

Jaouad Boukachour is an Associate Professor at the Department of
Computer Sciences, Le Havre Institute of Technology, France. He received
his PhD in computer science from the University of Rouen (France) in 1992
and Accreditation to Supervise Research from the University of Le Havre in
2006. His primary research interests are in scheduling problems, hard
optimization, supply chain and Logistics Information System. He has more
than 30 referred research papers and has supervised a number of PhD

researchers in areas such as logistics and scheduling aircraft landings.
Currently, he is supervising four PhD students working on traceability, risk
management, supply chain performance and optimization and presently acts
as scientific director of various research projects.

Ahmed El Hilali Alaoui is a PhD of Operational Research at the Faculty of
Sciences and Techniques of Fez, Morocco. His research interests include:
Scheduling Problems and Operational research. His is responsible for the
operational research and computer science group, and he is supervising 10
PhD students working on job shop scheduling, scheduling aircraft landing,
vehicle routing and optimization algorithms. He is a member of the La
Société Marocaine de Recherche Opérationnelle (SOMARO).

233

