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Abstract—There are so many important techniques towards 

finding the association rules. But, when we consider the sale of 

seasonal items (Winter, Summer, Spring etc.) or weighted items 

then no effective algorithm or model existed till now that can 

able to mine the interesting pattern on time–variant seasonal 

database. In view of this, we propose an optimized Temporal 

Weighted Association Rule miner (abbreviatedly as TWARM) 

algorithm to perform the mining for these problems and we 

conduct the corresponding performance studies by 

implementing this algorithm and then we used these weighted 

association rules for designing a good classifier to classify the 

items. 

Furthermore, without fully considering the time-changing 

characteristics or behavior of items and transactions, it is noted 

that some discovered rules may be expired from user’s interest 

i.e. rules generated in one season can not give the useful and 

required information in other season. Under TWARM we first 

partition the database on the bases of seasons (winter, summer, 

spring) or Yearly, Half Yearly or Quarterly etc. according to 

user’s requirements and then we apply temporal weighted 

mining on each partition. In TWARM (Temporal Weighted 

Association Rule Miner) the cumulative occurrence count of 

mining previous partitions is selectively carried over toward the 

generation of candidate itemsets for the subsequent partitions. 

We have also applied scan reduction technique in TWARM due 

to that only two scan of database are required, means saving 

lots of time. 

Now we have all Temporal Weighted Association Rules for 

Classification (TWARC) with the help of TWARM. By using 

these Temporal Weighted Association Rules we design a 

classifier to classify the items towards the appropriate class 

symbol. 

 
Index Terms—Weighted transaction, time weighted mining, 

seasonal mining, temporal weighted association rule miner, 

Classification based on weighted association. 

 

I. INTRODUCTION 

Association rule mining (ARM) is an important mining 

technique in the history of data mining. We try to find out the 

hidden relationship among the different attributes of a dataset 

in association rule mining for decision analysis, marketing 

analysis and business management purpose. 

One popular application of ARM is the market basket 

analysis, in which we try to find out the customer’s buying 

pattern for better customer management. In association rule 

mining, basically two term confidence threshold and support 

thresholds are used. 
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According to association rule mining algorithm, For a 

given pair of confidence and support thresholds, the problem 

of finding association rules is to identify all association rules 

that have confidence and support greater than the 

corresponding minimum support threshold (denoted as 

min_supp) and minimum confidence threshold (denoted as 

min_conf). Association rule mining algorithms [1] work in 

two steps:  

1) Generate all frequent itemsets that satisfy min_supp;  

2) Generate all association rules that satisfy min_conf using 

the frequent itemsets. 

On the other hand, a seasonal database consists of values 

or events varying with time. Seasonal databases are popular 

in many applications, such as medical treatments, sales for 

seasonal items, weather records, to name a few. In our 

opinion, the existing model of the constraint-based 

association rule mining is not able to efficiently handle the 

time-variant database due to two fundamental problems, i.e.,  

1) Lack of consideration of the seasonal occurrences of 

individual transactions;  

2) Lack of weighted support calculation for each item. 

Some of the effects of this phenomenon may be like this. 

1) Some old age product would be more frequent in 

comparison to new ones. 

If we apply the traditional association rule mining 

approach then the early product comes out to be more 

frequent in comparison to the later one. 

2) Some association rules are not so interested for the users.  

This happens due to the time span factor of short life 

products. 

3) Some transaction can be more important in comparison 

with other. 

4) Effective classification after effective association rule 

mining can produce more accurate and faster useful 

results. 

In this regard, we propose a Temporal Weighted 

Association Rule miner (abbreviatedly as TWARM) 

algorithm to perform mining for this problem. We also 

conducted the corresponding performance studies of 

TWARM. 

 

II. PROBLEM DESCRIPTIONS 

Initially divide the database D based on seasonal time 

granularities into n partition.  In the model TWARM, Px 

denotes the part of the transaction database where Px is a 

subset of D. We explore in this research work, the mining of 

weighted association rules, i.e., (A  B)W, where A B is a 
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weighted association rule produced by the concepts of 

weighted  support and weighted confidence. In TWARM we 

are not using traditional support threshold as in Apriori, i.e 

support=Probability (AUB), instead of that we are using a 

weighted minimum support for finding an association rules, 

and that is determined by min_SW = {Σ |Px| ×W (Px)} × 

min_supp where |Px| and W (Px) represent the number of 

partial transactions and their corresponding weight values by 

a weighting function W (Px) in the corresponding weighted 

period of the database D.  

 

III. TEMPORAL WEIGHTED ASSOCIATION RULE MINING 

It is noted that most of the previous studies, including 

those in [1], [2] belong to Apriori-like approaches. Basically, 

an Apriori-like approach uses an anti-monotone Apriori 

heuristic [3], i.e., if any itemset of length k is not frequent in 

the database, its length (k + 1) superitemset will never be 

frequent. The essential idea is to iteratively generate the set of 

candidate itemsets of length (k+1) from the set of frequent 

itemsets of length k (for k ≥ 1), and to check their 

corresponding occurrence frequencies in the database. 

As a result, if the largest frequent itemset is a j-itemset, 

then an Apriori-like algorithm may need to scan the database 

up to (j +1) times. This is the basic concept of an extended 

version of Apriori-based algorithm, referred to as AprioriW, 

performance of which will be comparatively evaluated with 

algorithm TWARM in our experimental studies later.  

In fact, as will be validated by experimental results later, 

the increase of candidates often causes a drastic increase of 

execution time and a severe performance degradation, 

meaning that without utilizing the partitioning and Time 

support counting techniques proposed, a direct extension to 

priori work is not able to handle the weighted association rule 

mining efficiently. 

In [4], the technique of scan-reduction was proposed and 

shown to result in prominent performance improvement. By 

scan reduction, Ck is generated from Ck−1*Ck−1 instead of 

from Lk−1*Lk−1. Clearly, a C’3 generated from C2 * C2, instead 

of from L2* L2, will have a size greater than |C3| where C3 is 

generated from L2*L2. Here * symbol is used to show the set 

theoretic join operation with a condition, and the condition is 

that candidate itemset Ck is joinable with Ck if there first k-1 

items are in common. In TWARM candidate itemsets are 

sorted in alphabetical order first so that joining process 

becomes faster. 

It can be seen that using this concept, one can determine all 

Lks by as few as two scans of the database (i.e., one initial 

scan to determine L1 and a final scan to determine all other 

frequent itemsets), assuming that C’k for k ≥ 3 is generated 

from C’k −1 and all C’k for k > 2 can be kept in the memory. It 

has been seen that the incremental mining technique used in 

algorithm TWARM will enable TWARM to obtain candidate 

set Ck with the size very close to that of Lk. This feature of 

TWARM allows itself of fully utilizing the technique of scan 

reduction and leads to prominent performance improvement 

over AprioriW.  

A. Algorithm of TWARM 

Initially, a time-variant database D is partitioned into n 

partitions based on the weighted periods of transactions. The 

procedure of algorithm TWARM is outlined below, where 

algorithm TWARM is decomposed into four sub-procedures 

for ease of description. C2 is the set of candidate 2-itemsets 

generated by database D. Recall that NPx(X) is the number of 

transactions in partition Px that contain itemset X and W (Px) 

is the corresponding weight of partition Px.  

Range of W (Px): In this experiment we have taken the 

range of W (Px) from 1 to 5 but values of W (Px) can be any 

values in the specified range and should be decided by expert 

of that dataset because if we have two events in a temporal 

database then weights can be different for both the events 

even the events are same, it may depends on the occurrence 

order of events also. Like in a medical database if two events 

fever and surgical operation occurs on a patient, then the 

weight of these two events may be different based on the 

occurrence instance. i.e if fever come before the surgical 

operation then it can be due to fear of surgical operation to 

the patient but if fever comes after surgical operation then it 

can be the result of infection. So the weights will be different 

for both the situation even though events are same. 

Algorithm TWARM (n, min_supp): Temporal Weighted 

Association Rule miner  

Procedure I: Partition the database according to season: 

Initial Partition, based on time i.e. yearly, half yearly, 

Quarterly etc based on seasons. 

Procedure II: Generation of Candidate 2-Itemset: 

Starting from the first partition, generate all candidate-2 

itemset with frequency in the first scan of database. 

Procedure III: Generation of Candidate k-Itemset:  

Generate candidate-k itemset by using scan reduction        

technique 

Procedure IV: Frequent Itemset Generation: 

Starting with first partition  

Find out all frequent itemset if minimum weighted support 

count is satisfied. 

 

IV. PERFORMANCE STUDIES 

To assess the performance of algorithm TWARM, we 

performed several experiments on a computer with 

Pentium-4 3.2GHz processor in Microsoft Windows 

environment. We have implemented TWARM in Visual 

Basic as front end and MS Access as a backend. We have also 

performed some experiments with real dataset with 

categorical attributes. For continuous valued attributes we 

have to first apply the Discretization rules to convert into 

categorical format. After discretization we use direct coding 

techniques to replace the actual attribute name with a single 

alphabet (i.e A, B, C…) so that in candidate generation step 

sorting would be easy and candidate generation would be 

faster. But for accurate time measurement we have taken here 

a synthetic data set for around 15000 transactions with 

different attributes. The performance comparison of 

TWARM and AprioriW is presented in Section IV A. 

A. Relative Performances 

Note that as pointed out earlier, there is essentially no 

817

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012



  

restriction on the form of weighting functions. In all the 

experiments shown we take transaction length 10, average 

length of frequent itemset is 5 and 15000 transactions in 

database D. 

We use the notation Tx−Iy −Dm to represent a database in 

which D = m transaction, |T| = x, and |I| = y ie T10-I5-D15000 

for x=10, y=5 and m=15000. 

Here we take a synthetic database of 4 years of transaction 

for our experimental results. 

 
 

 

Fig. 1. Relative performance studies between TWARM and AprioriW 
 

V. COMPARATIVE STUDY OF TWARM BETWEEN DIFFERENT 

TIME GRANULARITIES 

A. Comparative Study of TWARM between Time 

Granularity Half Yearly and Quarterly for Average 

Weights and with Different Minimum Support Values. 

TABLE I:  HALF YEARLY RESULTS OF AVERAGE WEIGHTS WITH DIFFERENT 

MINIMUM SUPPORT VALUES HALF YEARLY。 

Weights MinSupp | C2 | |Ck| | Lk | Lengt

h (Ck) 

Length 

(Lk) 

Jan-01 1.5 0.4 1869 1070 102 5 3 

Jul-01 1.5             

Jan-02 2             

Jul-02 2 
            

Jan-03 2.5 0.3 1982 1095 112 6 4 

Jul-03 2.5 
            

Jan-04 3 
            

Jul-04 3 0.2 2188 1236 132 9 5 

TABLE II: QUARTERLY RESULTS OF AVERAGE WEIGHTS WITH DIFFERENT 

MINIMUM SUPPORT VALUES QUARTERLY. 

Weights Min Supp | C2 | |Ck| | Lk | Length 

(Ck) 

Length 

(Lk) 

Jan-01 1 0.4 1755 1030 101 5 3 

May-01 1 
      

Sep-01 1 
      

Jan-02 1.3 
      

May-02 1.3 
      

Sep-02 1.3 0.3 1913 1072 107 6 4 

Jan-03 1.7 
      

May-03 1.

7       

Sep-03 1.

7       

Jan-04 2 
      

May-04 2 
      

Sep-04 2 0.2 2085 1133 114 9 5 

B. Comparative Study of TWARM between Time 

Granularities Half Yearly and Quarterly for Varying 

Weights and with Different Minimum Support Values. 

TABLE III: HALF YEARLY RESULTS OF VARYING WEIGHTS WITH DIFFERENT 

MINIMUM SUPPORT VALUES HALF YEARLY. 

Weights MinSupp | C2 | |Ck| | Lk | Length 

(Ck) 

Length 

(Lk) 

Jan-01 1 0.4 2064 1188 101 5 3 

Jul-01 2 
      

Jan-02 1 
      

Jul-02 3 
      

Jan-03 2 0.3 2079 1193 112 6 4 

Jul-03 3 
      

Jan-04 2 
      

Jul-04 4 0.2 2088 1237 132 9 5 

TABLE IV: QUARTERLY RESULTS OF VARYING WEIGHTS WITH DIFFERENT 

MINIMUM SUPPORT VALUES QUARTERLY. 

Weights Min

_Su

pp 

| C2 | |Ck| | Lk | Length 

(Ck) 

Length 

(Lk) 

Jan-01 1 0.4 1969 1098 100 5 3 

May-01 1 

      

Sep-01 1 

      

Jan-02 1 

      

May-02 1 
      

Sep-02 2 0.3 1994 1103 103 6 4 

Jan-03 1 
      

May-03 2 

      

Sep-03 2 
      

Jan-04 1 
      

May-04 2 

      

Sep-04 3 0.2 2026 1127 111 8 5 
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C. Analysis of Tables 

We can see by the values of Table I (Half Yearly) and 

Table II (Quarterly) that when we lower down the values of 

minimum support from 0.4 to 0.2, number of candidate-k 

itemsets is reduced from 1236 (min_sup=0.2, half early) to 

1133 (min_sup=0.2, Quarterly) even though weights equally 

scattered in database and count and length of frequent 

itemsets are same. So mining time will be smaller. This 

shows that Time factor play a major role if considered 

appropriately. 

In the same manner we can also see by the values of Table 

III (Half Yearly) and Table IV (Quarterly) that when we 

decrease the values of minimum support from 0.4 to 0.2, 

number of candidate-k itemsets is reduced from 

1237(min_sup=0.2, half early) to 1127(min_sup=0.2, 

Quarterly) when weights scattered integrally in database and 

count and length of frequent itemsets are same. So mining 

time will be smaller.  

These results imply that if we appropriately consider and 

use the time information on the dataset then the mining result 

we get will be more appropriate and mining time will be 

lesser. 

VI. CLASSIFICATION. 

After getting the entire weighted association rule set we 

have a complete rule space. Now we have to do classification 

with this rule space. Initially we select those rules that have 

class symbol in their consequent. 

Let A be the set of all attributes i.e. fields in data set. Let C be 

the set of all possible classes which are used to categorize 

transactions in D, where C A. Then the rule (X => Y)W is said 

to be Temporal weighted classification association rule if 

YC. According to the classification process Y needs to 

consist of only one Ai  A since any transaction can not 

belongs to multiple classes. 

To find out the Temporal Weighted Association Rules, we 

have two techniques, first one is to find out all the weighted 

association rules first and then perform classification and 

second one is to perform association and classification 

simultaneously in a controlled way. In this work we used first 

technique. 

A. Ordering TWARCs and Building a Classifier 

There are several methods existed in data mining literature 

to order the rule set such as CSA, WRA, and Laplace 

Accuracy [5], [6]. In this work, CSA (confidence, support, 

and size of antecedent) approach is used. The first factor that 

determines rules order is their confidence value: the higher 

rule’s confidence is, the lower its order number is. If we have 

two rules having exactly same confidence then we look for 

their supports. Again higher support is preferred. Finally, for 

the rules with same confidence and support, the smaller rule 

is placed before the longer one. We have also used a default 

class in TWARC for most seen class in data set [7]-[17]. 

The classifier is presented here 

B. Temporal Weighted Association Rule Classifier 

1) Select only those weighted association rules generating 

by TWARM that have a class attributes in that rule. Let’s 

call this rule set Temporal Weighted Association Rules 

for Classification (TWARC). 

2) Order temporal weighted association rules according to 

CSA (confidence, support, and size of antecedent) 

3) Test the given transaction starting from higher priority 

rules to lower priority rules to find out the corresponding 

class. 

4) If no rule is capable to decide the class then default class 

is assigned to that transaction. 

 

VII. CONCLUSIONS 

In this paper we design and evolutes the performance of 

TWARM (Temporal Weighted Association Rule miner) with 

a synthetic data set in which time constraint play a major role. 

In experimental result it is shown that the some problems can 

be effectively solved with the help of TWARM and 

TWARC. 

1) Some old age product would be more frequent in 

comparison to new ones. 

2) Some association rules are not so interested for the users  

3) Some transaction can be more important in comparison 

with other. 

4) Effective classification after optimized association rule 

mining can produce more accurate and faster useful 

results 

In addition to above problem we have seen that TWARM 

generate candidate itemsets as minimum as possible when 

minimum support value decreases gradually to a lower value. 

Due to this in candidate generation step time taken by 

TWARM is very less in comparison to older algorithm in 

which we don’t consider time factor effectively. 

We also had shown the execution time comparison by 

graphs with Apriori Algorithm, which shows TWARM, takes 

less time to Apriori.  
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