



Abstract—There are so many important techniques towards

finding the association rules. But, when we consider the sale of

seasonal items (Winter, Summer, Spring etc.) or weighted items

then no effective algorithm or model existed till now that can

able to mine the interesting pattern on time–variant seasonal

database. In view of this, we propose an optimized Temporal

Weighted Association Rule miner (abbreviatedly as TWARM)

algorithm to perform the mining for these problems and we

conduct the corresponding performance studies by

implementing this algorithm and then we used these weighted

association rules for designing a good classifier to classify the

items.

Furthermore, without fully considering the time-changing

characteristics or behavior of items and transactions, it is noted

that some discovered rules may be expired from user’s interest

i.e. rules generated in one season can not give the useful and

required information in other season. Under TWARM we first

partition the database on the bases of seasons (winter, summer,

spring) or Yearly, Half Yearly or Quarterly etc. according to

user’s requirements and then we apply temporal weighted

mining on each partition. In TWARM (Temporal Weighted

Association Rule Miner) the cumulative occurrence count of

mining previous partitions is selectively carried over toward the

generation of candidate itemsets for the subsequent partitions.

We have also applied scan reduction technique in TWARM due

to that only two scan of database are required, means saving

lots of time.

Now we have all Temporal Weighted Association Rules for

Classification (TWARC) with the help of TWARM. By using

these Temporal Weighted Association Rules we design a

classifier to classify the items towards the appropriate class

symbol.

Index Terms—Weighted transaction, time weighted mining,

seasonal mining, temporal weighted association rule miner,

Classification based on weighted association.

I. INTRODUCTION

Association rule mining (ARM) is an important mining

technique in the history of data mining. We try to find out the

hidden relationship among the different attributes of a dataset

in association rule mining for decision analysis, marketing

analysis and business management purpose.

One popular application of ARM is the market basket

analysis, in which we try to find out the customer’s buying

pattern for better customer management. In association rule

mining, basically two term confidence threshold and support

thresholds are used.

Manuscript received June 16, 2012; revised August 2, 2012.

P. Sharma is with the S. A. T. I. Vidisha (M. P), India (e-mail:

puru_mit2002@rediff.com)

K. Saxena is with the Department of Computer Application, S. A. T. I.

Vidisha (M. P), India (e-mail: kanak.saxena@gmail.com)

According to association rule mining algorithm, For a

given pair of confidence and support thresholds, the problem

of finding association rules is to identify all association rules

that have confidence and support greater than the

corresponding minimum support threshold (denoted as

min_supp) and minimum confidence threshold (denoted as

min_conf). Association rule mining algorithms [1] work in

two steps:

1) Generate all frequent itemsets that satisfy min_supp;

2) Generate all association rules that satisfy min_conf using

the frequent itemsets.

On the other hand, a seasonal database consists of values

or events varying with time. Seasonal databases are popular

in many applications, such as medical treatments, sales for

seasonal items, weather records, to name a few. In our

opinion, the existing model of the constraint-based

association rule mining is not able to efficiently handle the

time-variant database due to two fundamental problems, i.e.,

1) Lack of consideration of the seasonal occurrences of

individual transactions;

2) Lack of weighted support calculation for each item.

Some of the effects of this phenomenon may be like this.

1) Some old age product would be more frequent in

comparison to new ones.

If we apply the traditional association rule mining

approach then the early product comes out to be more

frequent in comparison to the later one.

2) Some association rules are not so interested for the users.

This happens due to the time span factor of short life

products.

3) Some transaction can be more important in comparison

with other.

4) Effective classification after effective association rule

mining can produce more accurate and faster useful

results.

In this regard, we propose a Temporal Weighted

Association Rule miner (abbreviatedly as TWARM)

algorithm to perform mining for this problem. We also

conducted the corresponding performance studies of

TWARM.

II. PROBLEM DESCRIPTIONS

Initially divide the database D based on seasonal time

granularities into n partition. In the model TWARM, Px

denotes the part of the transaction database where Px is a

subset of D. We explore in this research work, the mining of

weighted association rules, i.e., (A  B)W, where A B is a

Temporal Weighted Association Rule Mining for

Classification

Purushottam Sharma and Kanak Saxena

816

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

weighted association rule produced by the concepts of

weighted support and weighted confidence. In TWARM we

are not using traditional support threshold as in Apriori, i.e

support=Probability (AUB), instead of that we are using a

weighted minimum support for finding an association rules,

and that is determined by min_SW = {Σ |Px| ×W (Px)} ×

min_supp where |Px| and W (Px) represent the number of

partial transactions and their corresponding weight values by

a weighting function W (Px) in the corresponding weighted

period of the database D.

III. TEMPORAL WEIGHTED ASSOCIATION RULE MINING

It is noted that most of the previous studies, including

those in [1], [2] belong to Apriori-like approaches. Basically,

an Apriori-like approach uses an anti-monotone Apriori

heuristic [3], i.e., if any itemset of length k is not frequent in

the database, its length (k + 1) superitemset will never be

frequent. The essential idea is to iteratively generate the set of

candidate itemsets of length (k+1) from the set of frequent

itemsets of length k (for k ≥ 1), and to check their

corresponding occurrence frequencies in the database.

As a result, if the largest frequent itemset is a j-itemset,

then an Apriori-like algorithm may need to scan the database

up to (j +1) times. This is the basic concept of an extended

version of Apriori-based algorithm, referred to as AprioriW,

performance of which will be comparatively evaluated with

algorithm TWARM in our experimental studies later.

In fact, as will be validated by experimental results later,

the increase of candidates often causes a drastic increase of

execution time and a severe performance degradation,

meaning that without utilizing the partitioning and Time

support counting techniques proposed, a direct extension to

priori work is not able to handle the weighted association rule

mining efficiently.

In [4], the technique of scan-reduction was proposed and

shown to result in prominent performance improvement. By

scan reduction, Ck is generated from Ck−1*Ck−1 instead of

from Lk−1*Lk−1. Clearly, a C’3 generated from C2 * C2, instead

of from L2* L2, will have a size greater than |C3| where C3 is

generated from L2*L2. Here * symbol is used to show the set

theoretic join operation with a condition, and the condition is

that candidate itemset Ck is joinable with Ck if there first k-1

items are in common. In TWARM candidate itemsets are

sorted in alphabetical order first so that joining process

becomes faster.

It can be seen that using this concept, one can determine all

Lks by as few as two scans of the database (i.e., one initial

scan to determine L1 and a final scan to determine all other

frequent itemsets), assuming that C’k for k ≥ 3 is generated

from C’k −1 and all C’k for k > 2 can be kept in the memory. It

has been seen that the incremental mining technique used in

algorithm TWARM will enable TWARM to obtain candidate

set Ck with the size very close to that of Lk. This feature of

TWARM allows itself of fully utilizing the technique of scan

reduction and leads to prominent performance improvement

over AprioriW.

A. Algorithm of TWARM

Initially, a time-variant database D is partitioned into n

partitions based on the weighted periods of transactions. The

procedure of algorithm TWARM is outlined below, where

algorithm TWARM is decomposed into four sub-procedures

for ease of description. C2 is the set of candidate 2-itemsets

generated by database D. Recall that NPx(X) is the number of

transactions in partition Px that contain itemset X and W (Px)

is the corresponding weight of partition Px.

Range of W (Px): In this experiment we have taken the

range of W (Px) from 1 to 5 but values of W (Px) can be any

values in the specified range and should be decided by expert

of that dataset because if we have two events in a temporal

database then weights can be different for both the events

even the events are same, it may depends on the occurrence

order of events also. Like in a medical database if two events

fever and surgical operation occurs on a patient, then the

weight of these two events may be different based on the

occurrence instance. i.e if fever come before the surgical

operation then it can be due to fear of surgical operation to

the patient but if fever comes after surgical operation then it

can be the result of infection. So the weights will be different

for both the situation even though events are same.

Algorithm TWARM (n, min_supp): Temporal Weighted

Association Rule miner

Procedure I: Partition the database according to season:

Initial Partition, based on time i.e. yearly, half yearly,

Quarterly etc based on seasons.

Procedure II: Generation of Candidate 2-Itemset:

Starting from the first partition, generate all candidate-2

itemset with frequency in the first scan of database.

Procedure III: Generation of Candidate k-Itemset:

Generate candidate-k itemset by using scan reduction

technique

Procedure IV: Frequent Itemset Generation:

Starting with first partition

Find out all frequent itemset if minimum weighted support

count is satisfied.

IV. PERFORMANCE STUDIES

To assess the performance of algorithm TWARM, we

performed several experiments on a computer with

Pentium-4 3.2GHz processor in Microsoft Windows

environment. We have implemented TWARM in Visual

Basic as front end and MS Access as a backend. We have also

performed some experiments with real dataset with

categorical attributes. For continuous valued attributes we

have to first apply the Discretization rules to convert into

categorical format. After discretization we use direct coding

techniques to replace the actual attribute name with a single

alphabet (i.e A, B, C…) so that in candidate generation step

sorting would be easy and candidate generation would be

faster. But for accurate time measurement we have taken here

a synthetic data set for around 15000 transactions with

different attributes. The performance comparison of

TWARM and AprioriW is presented in Section IV A.

A. Relative Performances

Note that as pointed out earlier, there is essentially no

817

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

restriction on the form of weighting functions. In all the

experiments shown we take transaction length 10, average

length of frequent itemset is 5 and 15000 transactions in

database D.

We use the notation Tx−Iy −Dm to represent a database in

which D = m transaction, |T| = x, and |I| = y ie T10-I5-D15000

for x=10, y=5 and m=15000.

Here we take a synthetic database of 4 years of transaction

for our experimental results.

Fig. 1. Relative performance studies between TWARM and AprioriW

V. COMPARATIVE STUDY OF TWARM BETWEEN DIFFERENT

TIME GRANULARITIES

A. Comparative Study of TWARM between Time

Granularity Half Yearly and Quarterly for Average

Weights and with Different Minimum Support Values.

TABLE I: HALF YEARLY RESULTS OF AVERAGE WEIGHTS WITH DIFFERENT

MINIMUM SUPPORT VALUES HALF YEARLY。

Weights MinSupp | C2 | |Ck| | Lk | Lengt

h (Ck)

Length

(Lk)

Jan-01 1.5 0.4 1869 1070 102 5 3

Jul-01 1.5

Jan-02 2

Jul-02 2

Jan-03 2.5 0.3 1982 1095 112 6 4

Jul-03 2.5

Jan-04 3

Jul-04 3 0.2 2188 1236 132 9 5

TABLE II: QUARTERLY RESULTS OF AVERAGE WEIGHTS WITH DIFFERENT

MINIMUM SUPPORT VALUES QUARTERLY.

Weights Min Supp | C2 | |Ck| | Lk | Length

(Ck)

Length

(Lk)

Jan-01 1 0.4 1755 1030 101 5 3

May-01 1

Sep-01 1

Jan-02 1.3

May-02 1.3

Sep-02 1.3 0.3 1913 1072 107 6 4

Jan-03 1.7

May-03 1.

7

Sep-03 1.

7

Jan-04 2

May-04 2

Sep-04 2 0.2 2085 1133 114 9 5

B. Comparative Study of TWARM between Time

Granularities Half Yearly and Quarterly for Varying

Weights and with Different Minimum Support Values.

TABLE III: HALF YEARLY RESULTS OF VARYING WEIGHTS WITH DIFFERENT

MINIMUM SUPPORT VALUES HALF YEARLY.

Weights MinSupp | C2 | |Ck| | Lk | Length

(Ck)

Length

(Lk)

Jan-01 1 0.4 2064 1188 101 5 3

Jul-01 2

Jan-02 1

Jul-02 3

Jan-03 2 0.3 2079 1193 112 6 4

Jul-03 3

Jan-04 2

Jul-04 4 0.2 2088 1237 132 9 5

TABLE IV: QUARTERLY RESULTS OF VARYING WEIGHTS WITH DIFFERENT

MINIMUM SUPPORT VALUES QUARTERLY.

Weights Min

_Su

pp

| C2 | |Ck| | Lk | Length

(Ck)

Length

(Lk)

Jan-01 1 0.4 1969 1098 100 5 3

May-01 1

Sep-01 1

Jan-02 1

May-02 1

Sep-02 2 0.3 1994 1103 103 6 4

Jan-03 1

May-03 2

Sep-03 2

Jan-04 1

May-04 2

Sep-04 3 0.2 2026 1127 111 8 5

818

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

C. Analysis of Tables

We can see by the values of Table I (Half Yearly) and

Table II (Quarterly) that when we lower down the values of

minimum support from 0.4 to 0.2, number of candidate-k

itemsets is reduced from 1236 (min_sup=0.2, half early) to

1133 (min_sup=0.2, Quarterly) even though weights equally

scattered in database and count and length of frequent

itemsets are same. So mining time will be smaller. This

shows that Time factor play a major role if considered

appropriately.

In the same manner we can also see by the values of Table

III (Half Yearly) and Table IV (Quarterly) that when we

decrease the values of minimum support from 0.4 to 0.2,

number of candidate-k itemsets is reduced from

1237(min_sup=0.2, half early) to 1127(min_sup=0.2,

Quarterly) when weights scattered integrally in database and

count and length of frequent itemsets are same. So mining

time will be smaller.

These results imply that if we appropriately consider and

use the time information on the dataset then the mining result

we get will be more appropriate and mining time will be

lesser.

VI. CLASSIFICATION.

After getting the entire weighted association rule set we

have a complete rule space. Now we have to do classification

with this rule space. Initially we select those rules that have

class symbol in their consequent.

Let A be the set of all attributes i.e. fields in data set. Let C be

the set of all possible classes which are used to categorize

transactions in D, where C A. Then the rule (X => Y)W is said

to be Temporal weighted classification association rule if

YC. According to the classification process Y needs to

consist of only one Ai  A since any transaction can not

belongs to multiple classes.

To find out the Temporal Weighted Association Rules, we

have two techniques, first one is to find out all the weighted

association rules first and then perform classification and

second one is to perform association and classification

simultaneously in a controlled way. In this work we used first

technique.

A. Ordering TWARCs and Building a Classifier

There are several methods existed in data mining literature

to order the rule set such as CSA, WRA, and Laplace

Accuracy [5], [6]. In this work, CSA (confidence, support,

and size of antecedent) approach is used. The first factor that

determines rules order is their confidence value: the higher

rule’s confidence is, the lower its order number is. If we have

two rules having exactly same confidence then we look for

their supports. Again higher support is preferred. Finally, for

the rules with same confidence and support, the smaller rule

is placed before the longer one. We have also used a default

class in TWARC for most seen class in data set [7]-[17].

The classifier is presented here

B. Temporal Weighted Association Rule Classifier

1) Select only those weighted association rules generating

by TWARM that have a class attributes in that rule. Let’s

call this rule set Temporal Weighted Association Rules

for Classification (TWARC).

2) Order temporal weighted association rules according to

CSA (confidence, support, and size of antecedent)

3) Test the given transaction starting from higher priority

rules to lower priority rules to find out the corresponding

class.

4) If no rule is capable to decide the class then default class

is assigned to that transaction.

VII. CONCLUSIONS

In this paper we design and evolutes the performance of

TWARM (Temporal Weighted Association Rule miner) with

a synthetic data set in which time constraint play a major role.

In experimental result it is shown that the some problems can

be effectively solved with the help of TWARM and

TWARC.

1) Some old age product would be more frequent in

comparison to new ones.

2) Some association rules are not so interested for the users

3) Some transaction can be more important in comparison

with other.

4) Effective classification after optimized association rule

mining can produce more accurate and faster useful

results

In addition to above problem we have seen that TWARM

generate candidate itemsets as minimum as possible when

minimum support value decreases gradually to a lower value.

Due to this in candidate generation step time taken by

TWARM is very less in comparison to older algorithm in

which we don’t consider time factor effectively.

We also had shown the execution time comparison by

graphs with Apriori Algorithm, which shows TWARM, takes

less time to Apriori.

REFERENCES

[1] J. Ale and G. Rossi, “An approach to discovering temporal association

rules,” ACM symposium on Applied Computing, 2000

[2] J. Han and M. Kamber, “Data mining: Concepts and techniques,” 2 nd

ed, Morgan Kaufmann Publishers, 2000, ch. 5 and 6 pp. 227-377.

[3] C.-H. Lee, C.-R. Lin, and M.-S. Chen, “Sliding-window filtering: An

efficient algorithm for incremental mining,” Proc. of the ACM 10th

Intern’l Conf. on Information and Knowledge Management, November

2001

[4] X. Yin and J. Han, “CPAR: Classification based on predictive

association rule,” In SDM 2003, San Francisco, CA

[5] F. Thabtah, P. Cowling, and Y. Peng, “Comparison of classification

techniques for a personnel scheduling problem,” In Proceeding of the

2004 International Business Information Management Conference,

Amman, July 2004.

[6] B. Tunc and H. DAG, “Generating classification association rules with

modified Apriori,” In International Conference on Artificial

Intellegence, Knowledge Engineering and Data Bases, Madrid, Spain,

February 15-17, 2006

[7] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules

between sets of items in large databases,” Proc. of ACM SIGMOD, pp.

207-216, May 1993

[8] C.-H. Lee, J. C. Ou, and M.-S. Chen, “Progressive weighted miner: An

efficient method for time-constraint mining.”

[9] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms

for fast discovery of association rules,” 3rd KDD Conference, pp.

283-286, August 1997.

[10] M.-S. Chen, J.-S. Park, and P. S. Yu, “Efficient data mining for path

traversal patterns,” IEEE Transactions on Knowledge and Data

Engineering, vol. 10, no. 2, pp. 209-221, April 1998.

819

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

[11] I. Witten and E. Frank, “Data mining: practical machine learning tools

and techniques with Java implementations,” Morgan Kaufmann, San

Francisco, 2000.

[12] W. Wang, J. Yang, and P. Yu, “Efficient mining of weighted

association rules (WAR),” Proc. of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

2000.

[13] C. Leng, “An evaluation of approaches to classification rule selection,”

In Proc. of the IEEE ICDM, 2004, pp. 359-362.

[14] R. J. B. Jr., R. Agrawal, and D. Gunopulos, “Constraint-based rule

mining in large, dense databases,” Data Mining and Knowledge

Discovery, vol. 4, no. 2/3, pp. 217-240, 2007.

[15] Ayad, N. El-Makky, and Y. Taha, “Incremental mining of constrained

association rules,” Proc. of the First SIAM Conference on Data Mining,

2008.

[16] CBA. Data mining tool. Downloading page. [Online]. Available:

http://www.comp.nus.edu.sg/~dm2/p_download.html. Viewed on

February 2010

[17] Weka. Data Mining Software in Java. [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka. Viewed on February 2010.

820

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

