Performance Measure of Human Skin Region Detection Based on Hybrid Particle Swarm Optimization

R. Vijayanandh, Member, IACSIT and G. Balakrishnan

Abstract—This paper proposes an application of human skin region detection using Hybrid Particle Swarm Optimization (HPSO) algorithm. It consists of two steps. In the first step, the input RGB color image is converted into CIExYZ color space. Then this is clustered by the Hillclimbing segmentation with K-Means clustering algorithm, which will be useful to find the number of clusters and the local optimal solutions. In the second step, these local solutions are further improved by PSO algorithm using YCbCr explicit skin color conditions in order to find the global solution. This solution helps to detect the robust skin region. Finally the performance measure named Peak Signal-to-Noise Ratio (PSNR) is performed on the ground-truth skin dataset. The experimental results has shown the efficiency of the proposed method.

Index Terms—3D histogram, color space, hillclimbing segmentation with k-means, particle swarm optimization, PSNR.

I. INTRODUCTION

Applications of image segmentation can be found in a wide variety of areas such as remote sensing, vehicle and robot navigation, medical imaging, surveillance, target identification and tracking, scene analysis, product inspection/quality control etc. Image segmentation remains a long-standing problem in computer vision and has been found difficult and challenging for two main reasons: firstly, the fundamental complexity of modelling a vast amount of visual data that appear in the image is a considerable challenge; the second challenge is the intrinsic ambiguity in image perception, especially when it concerns so-called unsupervised segmentation. Hence, the proposed application focused on the cluster based segmentation which automatically determines the “optimum” number of clusters to the application of human skin region detection.

Skin region detection plays an important role in many applications of image processing. The applications are face detection, face recognition, gesture recognition, human body parts like hand, eye and lip detection and others. The important cue to detect the skin region is by skin color. So, color spaces play a major role to detect the skin region. Different color spaces like RGB, Normalized RGB, HSV, YCbCr [1],[2],[3],[4],[5] and CIExYZ [6] are mainly used. Since many recent proposals are based on the underlying idea of representing the skin color in an optimal color space by means of the so-called skin cluster. Color information is an efficient tool for identifying skin areas if the skin color model can be properly adapted for different lighting environments. This fact leads to avoid the use of RGB, because the red, green and blue components are highly correlated and dependent on lighting conditions. Hence, the proposed method is based on CIExYZ and YCbCr color spaces. Some of the skin color modeling techniques are skin detection rule, parametric skin distribution modeling, non-parametric skin distribution modelling [2] and edge based [4].

Optimization technique is very important in image segmentation applications. Since, this helps to minimize certain criteria (e.g., intra cluster centre). The optimization techniques are Simulated Annealing, Genetic Algorithms, Ant Colony Optimization algorithms and Particle Swarm Optimization. In that, PSO has been applied to many different applications of segmentation [1],[7],[8],[9], pattern classification and image analysis.

This proposed paper deals with 3D Histogram, dynamic cluster formation, local and global optimum solution. The local optimum solutions are determined by Hillclimbing segmentation with K-Means clustering algorithm of CIExYZ color image. Then these local solutions are further refined by the PSO algorithm, in order to find the global solution by YCbCr color space explicit skin color conditions.

The paper is structured as follows. In Section 2, literature review discussed. The Section 3, explain the formation of clusters and finding local solutions. The Section 4 describes the proposed HPSO algorithm. The Section 5 and 6, illustrates the performance measure and demonstrates the experimental results respectively. The conclusion and future work is discussed in the final section.

II. LITERATURE REVIEW

J. A. Nasiri, H. S. Yazdi and M. Naghibzadeh [1] proposed the chrominance based mouth detection approach using PSO rule mining. The high values of Cr and low values of Cb considered as the mouth region. PSO had been tuned to separate pixels properly.

Nils Janssen and Neil Robertson [2] used a non-parametric classification scheme based on a histogram similarity measure by various color spaces and the resolution of histograms. Also compared the results with three methods namely Gaussian, Bayesian and Thresholding.

V. Cheddad, J. Condell, K. Curran and P. Mc Kevitt [3] set hypothesis that “luminance inclusion does increase separability of skin and non-skin clusters”. This approach used a new color space which contains error signals derived from differentiating the grayscale map and the
non-encoded-red grayscale version and performed the reduction of space from 3D to 1D.

A.Y. Dawod, J. Abdullah and Md. J. Alam [4] also proposed the luminance based clustering. Edge detection could be used to construct a free-form skin color model. Gradient method by Sobel operator detected edges at finest scales and has smoothing action along the edge direction.

Qing-Fang Zheng and Wen Gao [5] proposed a fast adaptive skin detection approach that worked on DCT domain of JPEG image and classifies each image block according to its color and texture properties. The color and texture features adopted by YCbCr color space, since it is more valid than other color spaces for skin detection. The experiment carried out in two ways: first, the accuracy and efficiency of the method were compared with existing adaptive methods and non-adaptive method. Second, the advantage of using both color and texture features.

D. D. Gomez, C. Butakoff, B. K. Erskboll and W. Stoecker [6] proposed an unsupervised algorithm named Independent Histogram Pursuit for segmenting dermatological lesions. This method was used to find a suitable image-dependent linear transformation of an arbitrary multispectral color space to aid segmentation of dermatological images. The spectral bands was enhanced the contrast between healthy skin and lesion. Then the remaining N-1 combinations were estimated.

Chih-Cheng Hung and Li Wan [7] proposed the image classification by hybridization of Particle Swarm Optimization with the K-Means algorithm. This method was performed in two steps: in the first step, different PSO heuristics was optimized by the K-Means algorithm. In the second step, determined the reliability parametric values for different variants of PSO and K-Means algorithms.

Mahamed G.H. Omran, A. Salman and A. P. Engelbrecht [8] proposed a new dynamic clustering approach based on particle swarm optimization. Binary particle swarm optimization was used to automatically determine the optimum number of clusters. Then the chosen clusters were refined by K-Means clustering algorithm. The experiments were conducted by both synthetic images and natural images.

Yuhua Zheng and Yan Meng [9] proposed a robust tracking algorithm used an adaptive tracking window associated with five parameters. These parameters were optimized by a PSO algorithm. The fitness function for particles was calculated by appearance histogram.

The proposed paper used the concepts of YCbCr color space, CIEL*a*b color space, 3D Histogram, Hillclimbing K-Means clustering algorithm and PSO for finding a global solution. The above existing works clearly explained the importance of these concepts. The drawbacks identified by the existing works could be optimally reduced through combining these concepts, and also this is a good solution for the drawbacks mentioned in our previous works [10] and [11].

III. CLUSTER FORMATION AND FINDING LOCAL SOLUTIONS

K-Means clustering algorithm is one of the simplest and efficient unsupervised learning algorithms for clustering problems such as image segmentation. Such efficient algorithm could be used here for identifying the number of clusters and the local solutions.

The input color image is first converted into CIEL*a*b color space. Since CIEL*a*b color space is human perception based color space. 3D histogram and histogram size (number of bins) (here 10) are used to find the histogram peaks. This is used to obtain the number of initial seeds for K-Means clustering algorithm. The results of K-Means clustering algorithm and the number of cluster are passed to PSO algorithm for further refinement, in order to obtain the global best solution. 3D histograms assume dependence of one channel on the other and which is more realistic. This could be the same implementation as in third color space discussed in [12] and [13]. Fig. 1 shows the sample labelled segmentation results of Hillclimbing segmentation with K-Means clustering algorithm. Fig. 2 shows the distribution of pixels in CIEL*a*b color space of the Fig. 1 labelled images.

Table I shows the performance measures of automatic cluster formation by Hillclimbing segmentation with K-Means clustering algorithm.

TABLE I: CLUSTER FORMATION BY HILLCLIMBING SEGMENTATION WITH K-MEANS CLUSTER ALGORITHM

<table>
<thead>
<tr>
<th>Input Image</th>
<th>Image Size</th>
<th>Number of Clusters</th>
<th>Duration (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1 (a)</td>
<td>170 x 235</td>
<td>4</td>
<td>0.689</td>
</tr>
<tr>
<td>Fig 1 (c)</td>
<td>450 x 600</td>
<td>4</td>
<td>4.796</td>
</tr>
</tbody>
</table>

Fig. 1. Segmentation results of Hillclimbing segmentation with K-Means clustering algorithm (a), (c) Original image (b), (d) Segmented labelled image.

Fig. 2. Distribution of pixels in CIEL*a*b color space of Fig. 1 labelled images.
IV. PROPOSED HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM

Particle Swarm Optimization was originally introduced by Kennedy and Eberhart [14], inspired by social behaviour of bird flocking or fish schooling.

In PSO, a swarm of individuals (called particles) fly through the search space. Each particle represents a candidate solution to the optimization problem. The position of a particle is influenced by the best position visited by itself and the position of the best particle in its neighborhood. When the neighborhood of a particle is the entire swarm, the best position in the neighborhood is referred to as the global best position. The position of the best particle in its neighborhood. When the neighborhood of a particle is the entire swarm, the best position in the neighborhood is referred to as a global best position. The position of the best particle in its neighborhood. When the neighborhood of a particle is the entire swarm, the best position in the neighborhood is referred to as the global best position.

The new velocity and position of each particle can be calculated using the current velocity and the distance from the personal best position of each particle and the best global position of particles by using equations (1) and (2).

\[v_{id}^{k+1} = w \times v_{id}^k + c_1 \times \text{rand} \times (p_{id}^k - x_{id}^k) + c_2 \times \text{rand} \times (g_{best}^k - x_{id}^k) \]
\[x_{id}^{k+1} = x_{id}^k + v_{id}^{k+1} \]

where \(i = 1,2,...,n \), \(d = 1,2,...,m \), \(w, c_1, c_2 > 0 \), \(n \) is the number of particles in a group, \(m \) is the number of members in a particle, \(w \) is the inertia weight factor, \(c_1 \) and \(c_2 \) are acceleration constants, \(\text{rand} \) are random numbers with the range \([0,1]\). The particles follow up the scent of the best particle and the best global position of particles by using the calculated values of the equations.

Finally the segmented image is converted into gray scale image and performed the performance measure with PSNR by using MCG skin ground-truth dataset.

V. PERFORMANCE MEASURE

The performance measurement for image segmentation, the well known Peak Signal-to-Noise Ratio (in dB) which is classified under the difference distortion metrics is applied on the skin region detected by the proposed method and the ground-truth of skin images. It is defined as:

\[PSNR = 20 \log_{10} \left(\frac{255}{RMSE} \right) \text{ (dB)} \]

where RMSE is the root mean-squared error, defined as:

\[RMSE = \sqrt{\frac{\sum_{i=1}^{M} \sum_{j=1}^{N} (I(i,j) - \hat{I}(i,j))^2}{M \times N}} \]

Here \(I \) and \(\hat{I} \) are original and segmented images of size \(M \times N \) respectively.

PSNR is often expressed on a logarithmic scale in decibels (dB). PSNR values falling below 30 dB indicate a fairly low quality. However, a high quality image should strive for
40dB and above [15]. The PSNR value is calculated between
the gray converted image of the proposed segmented image
and the ground-truth of skin image [16].

VI. EXPERIMENTAL RESULTS

This proposed method was implemented by Matlab7.0 on
a 2.4GHz Pentium IV machine running on 256MB RAM.
Experiments were conducted by the images of MCG skin
ground-truth dataset, different country people and various
illuminations, totally 385 images. These images have
different numbers of clusters with varying complexities. The
proposed PSO algorithm parameters are empirically set as
follows: Nc is derived from the number of clusters of
K-Means clustering algorithm and w=1, c1=c2=2.

Fig. 1 (b) and Fig. 1 (d) shows the labelled cluster image
formed by Hillclimbing segmentation with K-Means
clustering algorithm, which is same as discussed in [12] and
[13]. This clustering algorithm could be useful to find the
number of cluster and to find the local optimal solution of the
input images.

Then these solutions are further refined by the proposed
PSO algorithm by YCbCr color space explicit skin color
conditions. The skin region cluster identified by the proposed
method, which is explained in the step 6 of the previous
section. The experiments on Hillclimbing segmentation with
K-Means clustering algorithm and PSO algorithm are
intended to show the effectiveness of the results of the
classification. Finally the performance measure of PSNR is
calculated between the gray converted segmented result and
MCG skin ground-truth dataset. The experiment could be
carried out by the MCG ground-truth skin dataset, skin
different illumination and lighting condition images, people
from various country and small skin patch images. Fig. 3 and
Fig. 4 show the skin region pixels distribution of the Fig. 1
Original images and the experimental result of the proposed
method respectively.

Hence the results are more robust and also overcome the
drawbacks mentioned in our previous works [10] and [11].
Fig. 4 (d), (f) and (l) are the best sample results, to prove the
proposed method is more robust than the existing work.

The PSNR values calculated by the proposed method for
Fig. 4 (b) and (d) is illustrated in Table II and the

Fig. 3. Skin region pixels distribution of the proposed method of Fig. 1
Original images.

Original images.

Fig. 4. Experimental results of the proposed PSO algorithm (a), (c), (e), (g),
(i), (k) Original image (b), (d), (f), (h), (j), (l) The proposed PSO algorithm
based skin region segmented image.
corresponding skin ground-truth images is shown in Fig. 5 (b) and Fig. 5 (d).

<table>
<thead>
<tr>
<th>Input Image</th>
<th>PSNR Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 5 (a)</td>
<td>41.14</td>
</tr>
<tr>
<td>Fig 5 (c)</td>
<td>41.14</td>
</tr>
</tbody>
</table>

Fig. 5. Skin ground-truth image (a), (c) Original image (b), (d) MCG skin ground-truth image.

VII. CONCLUSION AND FUTURE WORK

In this paper, a new skin region detection algorithm based on PSO was proposed. Dynamic formation of clusters by Hillclimbing segmentation with K-Means clustering algorithm and the chrominance based global solution of the skin cluster found by PSO algorithm makes the process more robust to detect the skin region. The performance measure and experimental results show that our method is satisfactory for skin region detection. These satisfactory results were based on the segmentation quality, duration of execution, dynamic cluster formation, less frame buffer usage and optimal global solution. Also the segmented results will be useful to many computer vision applications like Face detection, Face recognition, Gesture recognition and etc. Future work will extend the experiments on low-resolution images with texture and spatial information instead of the chrominance values.

REFERENCES

R. Vijayanandh received his B.Sc., Mathematics (Silver Medal) degree from St. Joseph’s College, Tiruchirappalli, Tamil Nadu, India in 1997. Also he obtained M.C.A and M.Phil (Computer Science) degrees from Bharathidasan University, Tiruchirappalli, Tamil Nadu, India in 2000 and 2005 respectively. He is currently pursuing Ph.D (Computer Science) at Bharathiar University, Coimbatore, Tamil Nadu, India.

He has 12 years of academic experience. Currently he is working as Assistant Professor and Head in the Department of Computer Applications, Imayam College of Information Technology, Tamil Nadu, India. He has published and presented many research papers in the International Journals and International Conferences held in India and abroad. He also received a travel grant from AICTE, New Delhi, India to present his paper in Nanyang Technological University, Singapore.

R. Vijayanandh is a member of IAENG, ISTE, IACSIT and AIRCC. His primary research interest includes Image Segmentation, Computer Vision and Vision-based Computer Interaction.

Dr. G. Balakrishnan received his Bachelors and Masters degree in Computer Science and Engineering from Bharathidasan University and Bharathiar University respectively. He received the PhD degree from University Malaysia Sabah, Malaysia in 2006. He is the Director of Indra Ganesan College of Engineering, Tiruchirappalli, Tamil Nadu, India. He has 10 years of academic experience. He has published more than 30 technical papers in various International Journals and Conferences. Dr. G. Balakrishnan is the active member of ISTE, CSI and IAENG. His research interest includes Image Processing, Neural Networks and Fuzzy Logic.