



Abstract—Today in the era of fast, modern and continuous

changing world, we need to enhance and improve the existing

routing and switching protocols for better performance.

OpenFlow switches enable researchers to test and examine the

behavior of newly designed protocol in their local environment

without disturbing the existing production flow. This allows us

to provide the minimize delay in production packet forwarding

and maximum flexibility in controlling the flow of experimental

packets through the network. In this paper, we have

demonstrated to run a network topology on OpenFlow Virtual

Machine Simulator (VMS) using NOX controller. Monitoring

of flow tables on various switches has been analyzed. Later, we

have developed a number of NOX controller components using

C++ code to restrict Address resolution Protocol (ARP) on our

network and to define dynamic programmable flows on

OpenFlow switches.

Index Terms—OpenFlow, NOX controller, VMS.

I. MOTIVATION AND NEED

Today in the era of fast, modern and enhanced

communicational technologies, internet users and devices are

growing very rapidly. This increase in internet applications

require low delay and high performance, which is being

provided in terms of high bandwidth using fast optical

technologies. IPv4 addresses were initially designed to use

for stationary devices, but with the pace of changing

environment as mobile devices, requires new protocols to be

designed and implemented, to fulfill the need of mobile

devices and applications. Main focus is on presenting a feel to

the mobile user as the same effect as if it is stationary.

Keeping in view address space depletion of IPv4 and future

requirements, serious efforts are desired in terms of new

protocols to meet future challenges of scalabilities and

performance for internet users and applications.

Transition from IPv4 to IPv6 is in progress. Protocols that

were in use with IPv4 like Domain Name System (DNS),

Dynamic Host Configuration Protocol (DHCP), Internet

Control Messaging Protocol (ICMP) etc. are modified to

work with new IPv6 protocol. IPv6 header itself can contain a

number of extension headers. Implementation of these new

proposals requires to be tested without affecting the

production network, so that on the basis of implementation

limitations, unattended or missing requirements, these can be

modified and enhanced.

A. Why OpenFlow?

By restricting our focus to the premises of a Local Area

Network (LAN), it is possible to use a computer to behave as

a switch, having multiple Network Interface cards (NIC);

Manuscript received September 10, 2012; revised November 20, 2012.

The authors are with the School of Electrical Engineering and Computer

Sciences National University of Sciences and Technology (e-mail:

10msithahmed@seecs.edu.pk).

each one is connected to a different network. The system

receives a packet from one network through one interface,

applying processing on the basis of packet header

information to decide on which interface or network it is to be

forwarded. In this case, we can enjoy the maximum

flexibility at the cost of significant delay in packet forwarding.

These delays can be minimized by choosing some hardware

based solution in terms of formal Ethernet switches. These

switches use predefined protocols defined by the vendors and

embedded inside the switches. Thus, using switches

minimizes the delay in forwarding the packets at the cost of

reduced flexibility. What’s if someone wants to test or use a

new protocol? When a new protocol is designed, it is not

possible to implement it on the internet without proper testing,

analyzing its behavior, efficiency and performance etc. So,

the new protocol must be first properly analyzed on a private

network using switches. The limitation is currently available

switches use predefined protocols and vendors don’t allow

the flexibility to implement new protocols on these switches.

II. INTRODUCTION

OpenFlow concept, its open source development and

deployment was initiated at Stanford University. Research

institutes and university campuses were encouraged to use

and spread the idea in their premises. OpenFlow switches

enable researchers to test and examine the behavior of newly

designed protocol in their local environment, while still

providing the minimize delay in packet forwarding and

maximum flexibility in controlling the flow of packets

through the network. The architecture of an OpenFlow

enabled Ethernet switch is shown in Fig. 1[1]. Data path

module is the heart of Ethernet switch which performs the

actual forwarding of packets. Control path is used to control

the decisions for forwarding the incoming packets to an

appropriate output interface. Control path make use of

protocols between switches in order to control the flow of

communication.

Without disturbing the Ethernet switched functionality,

OpenFlow adds an open flow module residing with control

path inside the Ethernet switch. This open flow module is

used to communicate with OpenFlow controller. The

communication between controller and OpenFlow module

must be safe through a reliable and secure channel. Open

flow switch contains the internal flow table totally managed

by OpenFlow controller. Flow table is managed through a

standard interface which enables the addition, updating and

removal of flow table entries. Routes between the nodes

arecontrolled through these flow table entries. OpenFlow

environment is described in the Fig. 2[1].OpenFlow switches

enable the vendors not to expose the existing functionality of

the switches and make it flexible for new protocols. For each

flow there is an entry in flow table. Each flow table entry

consists of three parts: Rule, Action and Stats. Rule is the

Xperience of Programmable Network with OpenFlow

Hasnat Ahmed, Irshad, Muhammad Asif Razzaq, and Adeel Baig

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

307DOI: 10.7763/IJCTE.2013.V5.699

exact matching of packet header information and flow table

entry. Action defines where to go if certain rule valid. Stats

are the information associated with the flow entry like time

elapsed after last use or packets and byte counters. By

implementing the rule property in flow table, network

researcher can experiment with the layer 2 as well as layer 3

functionalities. OpenFlow is not only being added as a

feature to commercial switches but also to wireless devices

such as WiFi Access Points and WiMAX base-stations.

Fig. 1. Openflow switch.

Fig. 2. Openflow system architecture.

III. RELATED WORK

Before the emergence of OpenFlow enabled technology,

researchers work on developing new protocols was limited.

GENI [2] were facilitating the researchers to experiment the

new routing protocols through allocating slices of the

network resources. Researchers could use these slices to

experiment their routing Algorithm. GENI assumes to

implement the new routing protocols on nationwide scale. So

it was a costly solution. OpenFlow has enabled the new

networking experiments in a campus area [3].

OpenRoads [4] platform is engaged in exploring and

experimenting with new solutions for Mobility including new

routing protocols and controllers using OpenFlow.

Community based open source framework development is

being done to support mobility where the controller is

handled with OpenFlow and device settings are managed

through SNMP. Technology level abstraction is used by

defining high-level control interfaces so that the development

remains reusable, flexible and can be easily enhanced to

support heterogeneous network. OpenRoads was tested on a

topology consists of 5 switches, 30 Wi-Fi APs and one

WiMax base station. Seamless handovers between different

wireless technologies were successfully managed among

mobility managers. To run researcher’s networking

experiment parallel with production traffic safely, there is a

need of network slicing. So in OpenFlow [5] is introduced.

Flow Visor is a special purpose controller that allows number

of researchers and network administrators to work parallel in

a network.

Demo [6] illustrated the experiment of demonstrating the

network connection between two buildings of Stanford

campus, through OpenFlow enabled routers and switches.

Mobility support at data link layer and network layer were

presented using OpenFlow controller. Several mobile clients

each one is running a game application, which is connected

with a game server, which is running inside a virtual machine.

There are a number of different hosts on which the virtual

machine can be migrated. Main focus was to maintain the

lowest delay between mobile node and virtual machine.

When a mobile client is moved, its connected virtual machine

is migrated to the nearest host to the mobile client. The

migration of VM is seamless to the mobile client application

without requiring any change in IP or MAC address and

maintains the existing connection between application

program at client and server program running inside VM.

N-casting [7] means when a packet is received, it is

multicast to n output interfaces, where at each interface

possibly different radio devices is attached. In traditional way,

it requires huge amount of bandwidth but OpenFlow made it

possible with comparable low bandwidth exploiting

OpenRoads with only an additional code of 227 lines.

N-casting [7] creates a network topology consists of

devices working with different network wireless technologies

WiFi and WiMAX and uses [4] OpenRoads to demonstrate a

flow between these devices. The packets received from any

of the device working with any network wireless technology

can be powerfully examined and programmed and flow path

can be defined to deliver it to any of the device.

IV. ACHIEVEMENTS AND CONTRIBUTION

Challenges in this project have been identified in the form

of following milestones:

1) Understanding of OpenFlow and running simple

network using OpenFlow.

2) Exploring OpenFlow components architecture, its

working and configuration of devices.

3) Developing NOX controller components in C++ that

defines decision based dynamic flow entries in the

OpenFlow switches.

V. RESEARCH APPROACH /METHODOLOGY

OpenFlow is an open source project, implemented using

python scripts and C++ programming language. We have

downloaded the currently running code, simulating network

traffic flow of a simple network topology. By examining this

code and after investigating how traffic flow can be

monitored and controlled, we have extended this work first to

develop our own controller components that can make

decision to define dynamic overflows on the basis of received

packet captured information. Our future work will develop

controller components to support hierarchical mobility

support.

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

308

VI. BENEFITS OF THE PROJECT

A. Experiments

Different experiments can be carried out in a network

topology using OpenFlow switch such as packet capturing,

observing network performance and delay on changing

packet size, packet loads, load balancing and traffic

engineering etc. Moreover, new protocols can be tested and

verified.

B. Cost

OpenFlow switches can be used to work on Layer 3 as a

router. Buying or utilizing a router for a test bed costs very

high as comparable to perform testing with OpenFlow

switches.

C. Noninterference

New protocols can be tested with OpenFlow switches,

even in production or existing network without disturbing its

flow.

D. Heterogeneous Network

OpenFlow switches can be used to configure to work with

heterogeneous network. Different radio devices can be

connected to different interfaces of the OpenFlow switch and

we can enable these devices to communicate with each other.

E. Consistent

It provides assurity to handle production traffic and

experimental traffic consistently.

VII. BENEFICIERIES OF THE PROJECT

Following are the direct customers who can take advantage

of using OpenFlow:

A. Researchers

 Newly designed protocols functionality can be tested and

their dependencies, new issues and performance factors can

be verified using OpenFlow switches.

B. Educational Institutions

Academic campuses can simultaneously run their

production network as well as network lab, where different

experiments on network protocols and devices can be carried

out.

C. Network Provider Industry

Infrastructure or service providers can test communication

among devices using different technologies.

D. Network Manufacturing Industry

Industry is encouraged to produce flexible switches that

enable customers to control and monitor the traffic flow using

the software part of switches.

VIII. OUTPUTS EXPECTED FROM PROJECT

Final results of this project will be demonstration of how

can we dynamically define flow in the switches and make

decision in defining flow on the basis of captured packet

header information.

IX. EXPERIMENTS AND RESULTS

A. Run OpenFlow VMS

Debian or Ubuntu along with GUI or desktop packages is

the first requirement. We have installed Debian Linux (Lenny)

on our system. One can use a virtual machine like VMWare

or Virtual Box to run Linux on top of Windows. Then we

used Synaptic manager utility to install all packages

dependencies for OpenFlow VMS. After that, downloaded

and setup OpenFlow VMS. Finally, we configured our

network topology in the form of xml and verified it by

running, as shown in Fig. 3.

B. Run OpenFlow Controller

We have successfully configured the controller by

downloading all the dependent packages and enabled the

controller’s listener port. We have installed NOX controller.

After successfully running controller, we start our network

topology, as defined in xml configuration.

It virtually creates four interfaces and four command

screen are displayed as shown in Fig. 4. We can verify

through some basic commands that all host and open flow

switches are connected or not.

Fig. 3. Openflow virtual machine simulator.

Fig. 4. Openflow VMS running topology.

C. Develop Controller Component (Blocking ARP)

Now we want to create a new component that will restrict

the ping functionality on the network. We see that when we

ping another host, flow entries are created in OpenFlow

switches of1 and of2.

Actually what happens is when an ARP message is sent to

switch, there is no entry in OpenFlow switch, means no

action is defined what to do for ARP request. The request is

forwarded to controller by the switch to get flow entry. The

controller analyze the request and posts a flow in which it is

define that flood the packet from all interfaces except from

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

309

where it is received. By our code, we restrict the ping

command by using the strategy that controller will not send a

flow to the switch when it analyze that the received request is

an ARP request packet. In this way, as no flow is returned to

switch, the switch will get no action and ping ICMP packets

will not sent to other switch, resulting ping command

restricted.

D. Develop Controller Component (Flow Attributes)

Now to start creating another new component hubTimeout.

In default hub component, you can see flow entries with

idle_timeout value 5, as shown in Fig. 5. If within 5 seconds,

this entry or flow is not used by the switch, it will be purged

after 5 seconds. We want to modify our hub component code

to enhance this value of idle_timeout and hard_timeout from

5 to 100. Actually, the theme of this exercise is how to set the

value in a flow. Using the approach in this practice, you can

set or modify any field or column value of a flow dynamically

before sending it to a switch as shown in Fig. 6.

Fig. 5. Idle_timeout flow entries before modification.

E. Develop Controller Component (Routing)

We will modify the hub code to get switch behavior. In hub,

the Action for the flow entry is Flood; means transmit the

packet from all interfaces except the interface from it has

received. In switch, when a packet received, we note the

source address (say s) and receiving interface (say I) and

define the flow that if destination address is s, action value is

output to interface I. We can see these

We can see these entries on OpenFlow switch so we can

route the packet with our defined flow.

Fig. 6. Idle_timeout flow entries after modification.

Fig. 7. Flow entries showing hub_action flood.

Fig. 8. Openflow switch entries showing switch behavior.

X. CONCLUSIONS AND FUTURE WORK

We have demonstrated the concept of programmable

networks using OpenFlow. We installed OpenFlow VMS and

NOX Controller, then developed three different controller

components using C++. Our future work is developing

controller component for hierarchical mobility.

REFERENCES

Hasnat Ahmed received the Bachelor degree in

the Software Engineering, from NUML, Pakistan

and doing MS degree in the IT, NUST, Pakistan

from 2010. He has seven years experience of

software development. In MS, his research
interests include programmable networks,

database mining and pattern designing.

Adeel Baig received PHD degree in the Computer

Science & Engineering, UNSW, and Australia. He is

a Assistant Professor of Computer Science and
Engineering in NUST. His research interests include

Protocols, IP technologies, Programmable Networks

etc.

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

310

[1] OpenFlow Hands‐on Tutorial. HOT‐Interconnects 2010. [Online].

Available:

http://www.OpenFlow.org/downloads/HOTITutorial-OpenFlow.pdf

[2] Global Environment for Network Innovations. [Online]. Available:

http://geni.net.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, and L.

Peterson, “Jennifer Rexford, Scott Shenker, and Jonathan Turner

OpenFlow: Enabling innovation in campus networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp.

69-74, April 2008.

[4] K.-K. Yap, M. Kobayashi, R. Sherwood, N. Handigol, T.-Y. Huang,

M.l Chan, and N. McKeown, “OpenRoads: Empowering research in

mobile networks,” in Proceedings of ACM SIGCOMM [Posteer],

Barcelona, Spain , August 2009

[5] R. Sherwood, M. Chan, G. Gibb, N. Handigol, T.-Y. Huang, P.

Kazemian, M. Kobayashi, D. UnderHill, K.-K. Yap, G. Appenzeller,

and N. Mckeown, Carving Resarch Slices out of your Production

Networks with OpenFlow.

[6] D. Erickson, B. Heller, D. Underhill, J. Naous, G. Appenzeller, G.

Parulkar, N. McKeown, M. Rosenblum, S. Kumar, V. Alaria, P.

Monclus, F. B. J. Tourrilhes, P. Yalagandula, S. Banerjee, C. Clark,

and R. McGeer, “A demonstration of virtual machine mobility in an

OpenFlow network,” in Proceedings of SIGCOMM, Seattle,

Washington, USA, August 17-22, 2008.

[7] K.-K. Yap, M. Kobayashi, R. Sherwood, G. Parulkar, T.-Y. Huang, M.

Chan, and N. McKeown, Lossless Handover with N-Casting between

Wifi-WiMax on OpenRoads.

Irshad did the MCS degree from Karachi

University, Pakistan and doing MS degree in the IT,

NUST, Pakistan from 2010. He has eight years
experience of software development. In MS, his

research interests include programmable networks,

Ontology’s and Database Mining.

Muhammad Asif Razzaq completed the MCS

degree from FUUAST, Pakistan and doing MS

degree in the IT, Nust, Pakistan from 2010. He has
ten years experience of software development. In

MS, his research interests include programmable

networks, database mining and pattern designing.

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

311

