General Information
    • ISSN: 1793-8201 (Print), 2972-4511 (Online)
    • Abbreviated Title: Int. J. Comput. Theory Eng.
    • Frequency: Quarterly
    • DOI: 10.7763/IJCTE
    • Editor-in-Chief: Prof. Mehmet Sahinoglu
    • Associate Editor-in-Chief: Assoc. Prof. Alberto Arteta, Assoc. Prof. Engin Maşazade
    • Managing Editor: Ms. Cecilia Xie
    • Abstracting/Indexing: Scopus (Since 2022), INSPEC (IET), CNKI,  Google Scholar, EBSCO, etc.
    • Average Days from Submission to Acceptance: 192 days
    • APC: 800 USD
    • E-mail: editor@ijcte.org
    • Journal Metrics:
    • SCImago Journal & Country Rank
Article Metrics in Dimensions

IJCTE 2010 Vol.2(4): 673-677 ISSN: 1793-8201
DOI: 10.7763/IJCTE.2010.V2.222

A Novel Interpolation Method Using Soft Data and Hard Data

Yi Du and Ting Zhang

Abstract—Interpolation methods play an important role in many fields such as industrial, geological and military fields for prediction. However, it is quite difficult to predict the unknown information only by some sparse hard data in the process of simulation based on current popular interpolation methods. Accuracy of simulated images can be improved by using soft data and hard data. Multiple-point geostatistics (MPS) originates from geostatistical fields and allows extracting multiple-point structures from training images, after that MPS can copy these structures to the regions to be predicted. To simulate or predict information accurately, an interpolation method using soft data and hard data in MPS is proposed. Dimension reduction is made by filters to reduce the CPU time and memory demand. All similar training patterns fall into a cell in the filter score space, which is created by filters. Finally, a training pattern is randomly drawn from a cell, and then is pasted back onto the unknown region to be predicted. The variogram curves of the simulated images are compared, showing that the structural characteristics of the image simulated by using both soft data and hard data are most similar to those of the training image.

Index Terms—interpolation; multiple-point geostatistics; soft data; hard data; filter

School of Computer and Information, Shanghai Second Polytechnic University , Shanghai, China (email: duyi@mail.ustc.edu.cn).
National Key Laboratory of Science and Technology on C4ISR, Nanjing, China (email: tingzh@mail.ustc.edu.cn).

[PDF]

Cite: Yi Du and Ting Zhang, "A Novel Interpolation Method Using Soft Data and Hard Data," International Journal of Computer Theory and Engineering vol. 2, no. 4, pp. 673-677, 2010.


Copyright © 2008-2024. International Association of Computer Science and Information Technology. All rights reserved.