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Abstract—This paper introduces an innovative architecture 

integrating Apache Kafka and microservices to enhance real-

time stock market prediction. Our approach dynamically selects 

the most effective predictive model based on current market 

conditions, ensuring consistent accuracy. The key research 

method involves deploying Apache Kafka for real-time data 

streaming, coupled with a microservices framework to maintain 

scalability and adaptability. Our methodology includes a 

thorough evaluation of various machine learning models 

(specifically focusing on R2, the coefficient of determination, as 

the metric) to ascertain their performance across different 

market scenarios. The results demonstrate the architecture’s 

ability to handle high data volume and velocity, while accurately 

adapting to market changes. The adaptability is evidenced by 

the varying performance of models like Convolutional Neural 

Network (CNN), Gate Recurrent Unit (GRU), and Long Short-

Term Memory (LSTM) across different entities such as Royal 

Bank of Canada, Google, and EUR/USD, with the system 

successfully identifying the most suitable model in real-time. 

This architecture not only provides a scalable solution for stock 

market prediction but also sets the foundation for future 

exploration in other real-time data-intensive domains. 

 
Keywords—Apache Kafka, microservices architecture, real-

time model switching, financial market prediction 

I. INTRODUCTION 

The stock market plays a pivotal role in global finance, 

with billions of dollars being traded daily across various 

exchanges worldwide [1]. These transactions encompass 

individual investors, hedge funds, and institutional 

participants who engage in trading with a diverse range of 

investment strategies. Traditional approaches for predicting 

stock market movements have predominantly employed 

either fundamental analysis or technical analysis [2, 3]. 

Imagine a bustling digital marketplace where the 

currencies of more than a hundred nations are being 

exchanged at lightning speeds. On one side, you have 

traditional stock exchanges with blue-chip companies from 

the U.S., setting their stock prices based on an intricate dance 

of supply and demand. On the other side, you have the 

electrifying world of cryptocurrencies like Bitcoin, where 

prices fluctuate wildly based on the speculative maneuvers of 

“bulls” and “bears”. This intricate tapestry is woven from 

countless threads of buying and selling behaviors, influenced 

by myriad factors that defy simplistic explanation. It’s a 

dynamic ecosystem where the old and the new collide, 

underscoring the need for more robust predictive models [4]. 

Fundamental analysis is geared towards understanding a 

company’s intrinsic value by scrutinizing various factors such 

as revenue, expenses, growth rates, and market position [5]. 

When forecasting indices, which comprise multiple company 

stocks, fundamental analysis extends its scope to include 

macroeconomic factors such as trade balances, exchange 

rates, and national productivity. This approach endeavors to 

uncover whether a stock or index is overvalued or 

undervalued, providing long-term investment signals. In 

contrast, technical analysis zeroes in on historical stock price 

and volume data, aiming to predict future price 

movements  [2]. The underlying principle is that all market 

information is already reflected in stock prices, and therefore, 

studying price patterns and trends can yield actionable 

insights. While both these methods offer valuable 

perspectives, they are increasingly deemed insufficient for 

capturing the evolving complexities of modern stock markets, 

which are influenced by a myriad of interrelated variables [6]. 

Advances in technology have paved the way for machine 

learning and computational intelligence techniques to fill this 

gap [7]. 

Studies leveraging Support Vector Machines (SVM), 

Neural Networks, and Deep Learning have emerged, aiming 

to improve predictive accuracy [3]. High-frequency and 

algorithmic trading have especially been revolutionized 

through technological advancements [8]. Companies like 

Renaissance Technologies, for example, are setting new 

benchmarks for market performance through the strategic 

utilization of big data and computational algorithms [9]. 

However, even these sophisticated machine learning models 

have shown limitations, particularly in their adaptability to 

changing market conditions and in their capability to 

integrate multiple data sources seamlessly [10]. Against this 

backdrop, the need arises for an advanced, adaptive 

architecture capable of handling the diverse and complex 

landscape of stock market prediction. Such an architecture 

should incorporate the strengths of both fundamental and 

technical analysis while also leveraging state-of-the-art 

machine learning algorithms like Convolutional Neural 

Networks (CNN) and Long Short-Term Memory networks 

(LSTM) for enhanced performance and adaptability [11]. 

To seamlessly navigate this intricate landscape, we must 

also consider the challenges introduced by the era of big data. 

In the age of big data, stock market prediction faces unique 

challenges related to the 5Vs: Volume, Velocity, Variety, 

Veracity, and Value [12, 13]. The sheer Volume of data 

generated by financial transactions, market feeds, and social 

media is enormous [12]. The Velocity at which this data 

arrives and needs to be processed is staggering, requiring 

real-time analytics [13]. The Variety of data sources adds 

additional complexity, as data comes in structured, semi-

structured, and unstructured formats [14]. Veracity deals with 

the uncertainty in data available, which could be due to data 

inconsistency, incompleteness, and available structure [15]. 
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Moreover, extracting Value from this massive and diverse 

set of data is a significant challenge [16]. Imagine a bustling 

digital marketplace where the currencies of more than a 

hundred nations are being exchanged at lightning speeds. In 

essence, the primary aim of this study is to propose a novel 

architecture that marries traditional analytical approaches 

with modern computational techniques. By doing so, we 

aspire to develop a more reliable, adaptive, and potentially 

profitable predictive system for stock market investments. 

This architecture addresses the noted gaps and limitations in 

existing models and methods, offering a comprehensive 

solution designed to adapt to diverse market scenarios. 

The current landscape of stock market prediction is fraught 

with challenges, primarily stemming from the rapidly 

evolving and complex nature of financial markets. 

Traditional predictive models often fall short in handling the 

intricate interplay of global economic factors, leading to 

limited adaptability and accuracy. Furthermore, the sheer 

volume, velocity, and variety of financial data in the digital 

age pose significant challenges for conventional analytical 

methods. Our research method directly addresses these issues 

by introducing an innovative architecture that combines the 

power of machine learning, Apache Kafka, and microservices. 

This approach not only enhances the adaptability and 

scalability of predictive models but also ensures real-time 

processing and analysis of diverse data streams. The 

integration of these advanced technologies enables our 

system to dynamically adjust to market changes and offer 

more accurate predictions. Thus, our method presents a 

significant advancement over traditional models, offering a 

more robust, flexible, and efficient solution for stock market 

prediction in today’s data-driven financial world. 

As we move forward, we delve deeper into the relevant 

literature that forms the foundation of our research, detailing 

existing models and identifying the gaps that our study aims 

to fill. This is followed by the methodology section, which 

elucidates the architecture, design principles, and machine 

learning algorithms employed in our predictive model. The 

“Implementation and Results” section offers a 

comprehensive analysis of the model’s performance, 

validated against real-time data from various financial 

markets. Finally, we conclude by summarizing the key 

contributions of this study and discussing potential avenues 

for future research. 

II. LITERATURE REVIEW 

Numerous academic publications have aimed to enhance 

the precision of stock market forecasts through the creation 

of advanced predictive models [3, 7]. Some research has even 

indicated that these models have the potential to be 

profitable  [17, 18]. Despite its importance, accurately 

predicting stock market trends remains an extremely 

challenging endeavor within the domain of financial 

research  [19]. Notably, an investor’s ability to consistently 

outperform the market in terms of risk-adjusted returns may 

be at odds with the principles of the Efficient Market 

Hypothesis (EMH).  

Initially proposed by Fama [20], the EMH posits that 

market prices evolve in a random manner, thereby making it 

impossible to predict future price changes based on existing 

information. The theory further categorizes market efficiency 

into three forms: weak-form, semi-strong form, and strong-

form [18, 20]. 

In the weak-form efficiency, the hypothesis asserts that 

current stock prices already incorporate all historical price 

information, rendering technical analysis ineffective for 

anticipating future price shifts [20]. The semi-strong form, on 

the other hand, claims that all public information, not just past 

prices, is accounted for in the current stock prices. Therefore, 

even with access to a broad spectrum of publicly disclosed 

information such as economic indicators or company news, 

an investor cannot consistently outperform the market [20]. 

The most rigorous form, the strong-form efficiency, argues 

that even insider information is reflected in stock prices. 

Consequently, no investor can achieve consistently better 

returns than the market average, even when armed with 

proprietary information [20]. This strong form presents an 

extreme viewpoint, with even [20] himself noting that it is 

unlikely that insider information cannot be exploited for 

superior returns. 

In recent developments, Chen et al. [21] have addressed 

the complexities of real-time news impact prediction on 

financial markets, a task that traditionally challenges finance 

experts with limited IT expertise. Their approach recognizes 

the shortcomings of conventional machine learning models 

that rely on low-level features extracted from event-based 

streams, often leading to suboptimal outcomes. To overcome 

these limitations, they proposed a novel technique leveraging 

real-time data preprocessing tailored to domain-specific 

event patterns, resulting in higher-quality datasets. This 

method is encapsulated within a systematic framework that 

integrates sentiment analysis, complex event processing, and 

Automated Machine Learning (AutoML). The framework’s 

Service-Oriented Architecture (SOA) ensures flexible 

component selection and seamless integration, enabling 

finance experts to define domain-specific patterns and 

generate meaningful prediction results with minimal IT 

intervention. This innovation not only streamlines the 

predictive process but also empowers domain experts to 

engage more directly in the analysis, as evidenced by their 

prototype’s successful application in a real-life price 

movement prediction scenario involving three years of news 

and financial market data. 

In the realm of financial enterprise systems, the 

significance of real-time event streaming cannot be 

overstated. Sanjana et al. [22] underscore this point by 

emphasizing the role of Apache Kafka as a leading 

framework for real-time data streaming. Kafka’s capabilities 

extend beyond mere data transmission; it provides a robust, 

distributed, and fault-tolerant infrastructure for capturing, 

storing, and processing event streams. The adaptability of 

Kafka enables seamless integration with various systems and 

applications, facilitating immediate data analysis and 

processing. This attribute of Kafka makes it an invaluable 

asset in diverse sectors, particularly in finance where rapid 

decision-making and operational efficiency are paramount. 

The authors elaborate on how Kafka’s real-time event 

streaming can revolutionize business operations by 

expediting decision-making processes, enhancing operational 

efficiency, and refining customer experiences. Their study 

delves into Kafka’s potential as a superior alternative for 

augmenting event streaming within financial enterprises, 
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marking a significant stride in the evolution of real-time data 

handling in complex financial systems. 

In exploring advancements in predictive modeling, recent 

studies in diverse domains have demonstrated the versatility 

and potency of machine learning techniques. Chen et al. [21] 

elucidated a robust framework for real-time news impact 

prediction on financial markets, highlighting the synergy 

between domain-specific event patterns and Automated 

Machine Learning (AutoML) to enhance prediction accuracy 

and computational efficiency in the context of dengue 

outbreak prediction. Similarly, Mahdavi and Khademi [23] 

leveraged neuro-fuzzy systems in conjunction with data 

mining techniques, illustrating their application in the 

accurate forecasting of oil production, emphasizing the 

integration of data cleaning and pre-processing to refine 

ANFIS algorithm performance. Furthermore, Radhika and 

Shashi showcased the superiority of Support Vector 

Machines (SVM) over traditional neural network models like 

MLP in atmospheric temperature prediction, underscoring 

the critical role of parameter selection in optimizing SVM 

performance [24]. These studies collectively underscore the 

expanding horizon of machine learning applications across 

various sectors, reaffirming the necessity for continuous 

innovation and adaptation in predictive modeling 

methodologies. 

As for the next section, we provide a general overview of 

the data and machine learning techniques used in stock 

market prediction. 

III. ANALYTICAL FOUNDATIONS AND METHODOLOGIES IN 

STOCK MARKET PREDICTION 

A. Data Sources 

In stock market prediction research, a variety of variables 

have been explored to improve forecasting accuracy. 

Technical indicators, financial variables, and macro-

economic variables are the most influential factors affecting 

stock prices [25]. However, there is no general consensus 

about the specific variables that should be used, and studies 

often incorporate different sets of variables. These variables 

are categorized into four main categories: technical indicators, 

macro-economic variables, fundamental indicators, and other 

variables (Fig. 1) [4].  

 

 
Fig. 1. Variable categories for stock price and return predictions [4]. 

1) Technical indicators 

Widely used in most prediction studies, technical 

indicators are divided into “basic technical indicators” and 

“other technical indicators” [3, 26, 27]. Some research also 

explores these indicators in a "momentum space" instead of a 

continuous variable [28]. 

2) Macro-economic variables 

This includes exchange rates, commodities, economic 

performance, and interest rates and money supply [29, 30]. 

3) Fundamental indicators 

This involves stock information variables and balance 

sheet & profit and loss statement variables [31]. 

4) Other variables 

This encompasses diverse data types like price data of 

other indices, financial news, email data, and social media 

posts [32, 33].  

B. Machine Learning Techniques 

1) Overview of supervised learning 

Supervised learning remains the cornerstone in the realm 

of stock market prediction. It encompasses a structured 

approach where the model is trained on labeled data, learning 

to map input features to the target output [25, 34]. Key 

algorithms in this category include Artificial Neural 

Networks (ANNs), Support Vector Machines (SVMs), 

Random Forests, K-Nearest Neighbors (KNN), and Bayesian 

Networks. These algorithms have been widely applied due to 

their ability to handle complex, nonlinear relationships 

inherent in financial data [25, 35]. 

2) Feature extraction techniques 

Effective feature extraction is vital for improving the 

performance of machine learning models in stock prediction. 

Techniques such as Convolutional Neural Networks (CNN), 

Principal Component Analysis (PCA), and Genetic 

Algorithms are employed to extract meaningful patterns and 

relationships from financial data. CNNs, in particular, have 

shown significant promise in identifying intricate patterns in 

time-series data, making them a popular choice for analyzing 

stock market trends [1, 33]. 

3) Enhancing prediction accuracy 

Enhancing the prediction quality of models involves 

optimizing their learning algorithms and fine-tuning 

hyperparameters. Hybrid methods, combining different 

machine learning techniques, have emerged as a powerful 

approach in this domain. For instance, integrating KNN, 

ANN, and SVM can lead to a model that leverages the 

strengths of each individual method, resulting in improved 

accuracy and robustness in financial market 

predictions  [17,  36]. 

4) Application of deep learning 

Deep learning, a subset of machine learning, has gained 

traction in recent years for its effectiveness in handling vast 

datasets typical in finance. Deep learning architectures like 

Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks are particularly suited for time-

series analysis, such as predicting stock prices or market 

trends. These models can capture temporal dependencies and 

patterns in historical data, which are crucial for accurate 
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financial forecasting [37, 38].  

5) Challenges and future directions 

While machine learning offers promising solutions for 

financial prediction, challenges such as model overfitting, 

data quality, and the dynamic nature of financial markets 

persist. Future research in this area should focus on 

developing more adaptive, resilient models that can better 

handle market volatility and data anomalies. Additionally, 

there is a growing need for models that can interpret and 

explain their predictions, enhancing transparency and trust in 

machine learning-based financial decision-making [39, 40]. 

For a visual representation of the typical workflow involved 

in a supervised learning approach for stock market prediction, 

refer to Fig. 2. 
 

 
Fig. 2. Workflow of a stock market prediction model with supervised 

learning [4]. 

 

C. Benchmarking & Limitations 

The scope and sophistication of machine learning 

algorithms for stock market prediction have significantly 

evolved, as evidenced by the various studies and approaches 

outlined in Table 1. However, it is essential to benchmark 

these advanced machine learning and deep learning 

algorithms against other strategies and traditional statistical 

methods. Data loss, overfitting, and model robustness are still 

significant concerns that require attention [33]. 

The comprehensive work summarized in Table 1 presents 

an array of approaches based on different stock indices across 

the world, employing multiple machine learning and deep 

learning models. From ANNs used in MSCI United Kingdom 

to more complex Deep Belief Networks (DBN) used in the 

Nikkei 225 index, the variety is evident. Each approach uses 

different scopes like price data, technical indicators, or a 

combination of both to improve prediction accuracy. For 

instance, the NASDAQ incorporates Price data along with 

technical indicators and utilizes Principal Component 

Analysis (PCA) with Deep Neural Networks (DNNs) for 

prediction [41]. Such diversity indicates the ongoing 

exploration for the optimal blend of variables and 

computational models. Additionally, the application of 

machine learning techniques varies significantly across 

different economic markets, suggesting that geographic and 

economic factors could also influence the model’s 

performance. For example, simpler machine learning models 

like Binary mapping are used for the Tehran stock 

exchange  [42], whereas more complex techniques like DNNs 

are applied for more developed markets like the Australian 

securities exchange [43]. 

 
Table 1. Comprehensive work on prediction algorithm based on feature 

extractions [6] 

Reference Scope Prediction Algorithm/s 

[10] 
Korean stock 

index 

Price data AE, Principal 

Component Analysis (PCA), 

Restricted Boltzmann Machine 

(RBM), ANN, DNN 

[41] NASDAQ 
Price data, technical indicators 

PCA DNN 

[42] 
Tehran stock 

exchange 

Technical indicators Binary 

mapping Machine learning and 

deep learning models 

[43] 
Australian securities 

exchange 
Price Data Neural network IOWA 

[44] Nikkei 225 index 

Price data RBM, Recurrent 

Neural Network-Deep Belief 

Network (RNN-DBN) 

[45] MSCI, UK Price data ANN, LSTM, RF, SVR 

[46] Indian stock market 
Price data, Technical indicators 

Scaled raw data LSTM 

 

However, despite these advances, there are inherent 

limitations: 

⚫ Overfitting: Many machine learning models, especially 

deep learning models, are prone to overfitting, 

especially when trained on limited or noisy data. 

⚫ Data Loss: The preprocessing steps, including data 

normalization and dimensionality reduction, can 

sometimes result in the loss of critical information, 

affecting the model’s predictive accuracy. 

⚫ Benchmarking: Most studies focus on the predictive 

power of individual algorithms, with less emphasis on 

comparing these newer machine learning models 

against traditional statistical models or even simpler 

machine learning models. 

⚫ Scalability: An additional concern is the need for a 

system to be scalable, reliable, and maintainable to 

effectively predict a wide range of markets and 

currencies [47]. Scalability remains a challenge, as 

models that perform well on specific indices or 

economic conditions may not necessarily generalize 

well to larger or more complex financial landscapes. It 

is here that our research intends to focus, aiming to 

address this crucial issue of scalability. 

IV. PROPOSED METHOD 

This research proposes a novel method for predicting real-

time stock market trends by integrating machine learning 

algorithms with streaming data processing platforms and 

microservices. The architecture aims to harness the power of 

Apache Kafka for handling a high volume of real-time data 

streams emanating from various sources such as markets and 

currency sensors. We aim to enhance scalability while 

maintaining prediction accuracy. The architecture of the 

proposed system is schematically illustrated in Fig. 3. 
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A. Overview of Phases 

The entire system is designed to operate in three distinct 

but interconnected phases. Each phase aims to address a set 

of challenges and requirements to ensure the system’s overall 

effectiveness, scalability, and accuracy. 
 

 
Fig. 3. Workflow of a stock market prediction model with supervised 

learning [4]. 

 

1) Machine learning model development 

In the first phase of our proposed architecture, the 

emphasis is on developing robust machine learning models 

tailored to the specific requirements of real-time stock market 

prediction. This phase encompasses several crucial steps 

designed to ensure that the models are both accurate and 

scalable. The following are the sub-tasks involved in this 

phase: 

1) Load the Data from Each Dataset: Data pertaining to 

various stock market indicators, market trends, and 

currency sensors will be loaded into the system. 

These data sources can be quite heterogeneous, 

demanding different preprocessing steps 

2) Run Microservices Independently: Each dataset is 

hand-led by an independent microservice. The 

architecture is designed to run these microservices 

independently so that they can process the data, 

develop models, and make predictions without 

affecting each other’s performance. 

3) Split Data into Train and Test Sets: For each 

microservice, the loaded data will be divided into 

training and testing sets. The training set will be used 

to build and train machine learning models, while 

the testing set will serve to evaluate these models’ 

performance. 

4) Run Probable Models on Datasets: Various machine 

learning models are run on the training sets. These 

could range from linear regression models to more 

complex neural networks, depending on the type of 

data and the specific prediction needs. 

5) Select the Best Model for Each Microservice: After 

running multiple models, the one yielding the 

highest prediction accuracy will be selected for each 

microservice. This model will then be deployed for 

real-time stock market prediction. 

6) Update Best Model in Database as BLOB: Once the 

best Once the best model is selected, it will be 

serialized and stored in the database as a Binary 

Large Object (BLOB). This allows for quick 

retrieval and deployment, making it easier to update 

or replace the model as new data becomes available 

or when the model needs to be refined. 

7) By meticulously executing these steps in Phase 1, we 

aim to build a strong foundation for the following 

phases. This ensures that the machine learning 

models are not only accurate but are also seamlessly 

integrated into the broader architecture designed for 

real-time data processing and stock market 

prediction. 

 

Algorithm 1. Training and Model Selection 

 Input: data_topic, db_connection 

 Output: best_model 

0: procedure TRAINMODELS(data_topic, db_connection) 

1: data ⟵ KafkaConsumer.Consume(data_topic) 

2: train_data, test_data ⟵  SplitData(data) 

3: model_X1 ⟵  InitializeModelX1() 

4: model_X2 ⟵  InitializeModelX2() 

5: model_X3 ⟵  InitializeModelX3() 

6: Train(model_X1, train_data) 

7: Train(model_X2, train_data) 

8: Train(model_X3, train_data) 

9: error_X1 ⟵  Evaluate(model_X1, test_data) 

10: error_X2 ⟵  Evaluate(model_X2, test_data) 

11: error_X3 ⟵  Evaluate(model_X3, test_data) 

12: best_error ⟵  min(error_X1, error_X2, error_X3) 

13: if best_error == error_X1 then 

14:  best_model ⟵  model_X1 

15: else if best_error == error_X2 then 

16:  best_model ⟵  model_X2 

17: else 

18:  best_model ⟵  model_X3 

19: end if 

20: db_connection.SaveModelAsBLOB(best_model) 

21: end procedure 

22: return best_model = 0 

 

2) Real-time data processing platform 

In the second phase of our research, the focus shifts to 

establishing a robust real-time data processing platform 

capable of handling streaming data. Apache Kafka serves as 

the backbone of this phase, enabling high-throughput, real-

time data ingestion and processing. The main components of 

this phase include: 

1) Fetching Data from Stream for Model Update: For 

each topic in Apache Kafka, data streams are fetched 

in real-time. These data streams can contain new 

trends, trading volumes, and other market indicators 

that may influence stock prices. 
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2) Change Data Capture (CDC): To ensure that the data 

and models are always up-to-date, two different 

methods are used to trigger CDC.  

• By Count: The system checks the database after 

every 10 or 20 inserts. If a change is detected, 

corresponding actions are triggered. 

• By Time: Alternatively, the system performs a check 

at regular intervals, such as every 1 hour or even 

once a day, to detect any changes in the data. 

3) Data Preprocessing: Before the data can be used to 

make any meaningful predictions, it must first 

undergo a series of preprocessing steps. Some of the 

preprocessing actions include: 

• Handling Missing Values 

• Data Transformation 

• Validity Checks 

• Noise Reduction 

4) Feature Extraction: After preprocessing, feature 

extraction techniques are applied to convert the raw 

data into a more suitable format or structure for 

analysis or modeling. This could involve 

dimensionality reduction techniques, generating 

composite features, or selecting only those features 

that contribute the most to prediction accuracy. 

5) Sending Result into Appropriate Database:  The 

processed data, along with any features extracted, 

are sent to the appropriate database. This is done to 

ensure that the data is readily accessible for further 

analysis or for entering the next phase of our 

architecture. 

The completion of Phase 2 ensures that the architecture is 

capable of handling real-time data efficiently, preprocessing 

it, and extracting features that will be critical for the machine 

learning models to make accurate predictions. The use of 

Apache Kafka facilitates the seamless integration of various 

data streams, enhancing the system’s robustness and 

scalability. 

 

Algorithm 2. Real-time Data Processing 

 Input: topic (Kafka topic), db_connection (Database 

connection)  connection) 

 Output: Updated best_model (Best predictive model 

 based on the latest data) 

0: procedure DATA_PROCESSING(topic, db_connection) 

 {Retrieve data from the specified Kafka topic} 

1: data_stream ⟵ KafkaConsumer.Consume(topic) 

2: {Perform necessary data preprocessing and feature  

 extraction  on the consumed data stream} 

3: best_model <- db_connection.FetchBestModel() 

 {Retrieve the current best model from the database} 

4: Update(best_model, data_stream) {Update the best  

 model with the new data} 

5: end procedure 

6: return best_model {Return the updated best predictive 

 model} =0 

 

3) Real-time prediction and feedback loop 

The third and final phase of the proposed architecture 

focuses on leveraging the machine learning models 

developed in Phase 1 and the real-time data processing 

capabilities built in Phase 2 to make real-time stock market 

predictions. This phase operates in a closed-loop manner, 

continually updating its models and predictions based on 

incoming data and consumer feedback. The main components 

of this phase are as follows:  

1) Fetching Real-time Data: In this step, real-time data 

from thousands of diverse sources are fetched and 

added to the stream for model updating. This data 

also undergoes the CDC process and the various 

preprocessing steps as established in Phases 2 and 1, 

respectively. 

2) Handling Prediction Requests: Whenever there is a 

request for making a stock market prediction, this 

request is placed in another dedicated Apache Kafka 

stream called “Stream for Prediction”. 

3) Fetching the Best Model: The architecture fetches 

the best-performing machine learning model for the 

specific stock market in question from the database 

that was populated in Phase 1. 

4) Real-time Prediction and Storage: Utilizing the 

fetched model and real-time data, a prediction is 

made. This prediction is then stored to be used in 

future analyses aimed at improving model precision. 

5) Sending Results to Consumers: Finally, the 

prediction results are sent to consumers who can be 

individual users, trading platforms, or any other 

entities interested in stock market predictions. 

This final phase ensures that the architecture is not just 

robust and scalable but also actionable. By connecting real-

time data acquisition with machine learning prediction and 

immediate dissemination of these predictions, Phase 3 

transforms the architecture into a complete end-to-end 

solution for real-time stock market prediction. The closed-

loop nature of this phase allows for continual refinement of 

the models, thereby improving the accuracy and reliability of 

future predictions. 

 

Algorithm 3. Real-time Data Prediction 

 Input: topic, db_connection 

 Output: Sent prediction 

0: procedure DATA_PREDICTION(topic, db_connection) 

1: request ⟵ KafkaConsumer.Consume(topic) 

2: best_model ⟵ db_connection.FetchBestModel() 

3: prediction ⟵ Predict(best_model, request) 

4: db_connection.SavePrediction(prediction)  

5: KafkaProducer.Send(prediction) 

6: end procedure 

7: return Sent prediction =0 

 

B. Architecture Major Components 

1) Dataset 

The Yahoo! Finance API serves as the primary data source 

for this research, offering real-time and historical financial 

information on various markets and securities.  

Features 

• Historical Quotes: For trend analysis and model training. 

• Real-Time Market Data: Essential for real-time 

predictions. 

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

49



  

In this project, the API is used to obtain data in different 

time frames, aiming to optimize the machine learning models 

in Phase 1. This multi-temporal approach aims to capture 

various market dynamics effectively and feeds into 

subsequent phases for real-time prediction and analysis [48]. 

2) Apache Kafka 

It is an open-source distributed streaming platform 

designed to efficiently handle large volumes of real-time data. 

Its architecture ensures fault tolerance, scalability, and 

efficient data processing [49]. 

Features: 

• Distributed Streaming: Kafka facilitates data 

distribution across clusters, enhancing scalability and 

fault tolerance. 

• Data Chunking: By breaking data into smaller pieces, 

Kafka optimizes the data transfer and processing speed. 

In this project, Apache Kafka is pivotal for managing the 

incoming high-velocity financial data, sourced from the 

Yahoo! Finance API and other market sensors, in real-time. 

Kafka will serve as the initial ingestion layer where each 

stream or “topic” may represent data from a specific market 

or financial instrument. 

The processed data will then be directed to the machine 

learning algorithms for both training (Phase 1) and real-time 

prediction (Phase 3). Kafka’s role is essential for data 

preprocessing, ensuring that the real-time data are filtered, 

transformed, and made ready for subsequent phases of the 

research. 

By integrating Kafka with Microservices and the machine 

learning models, the architecture aims to create a robust, 

scalable, and reliable platform for real-time stock market 

prediction and analysis. 

3) Microservices architecture 

It is a method of application development wherein each 

component or service runs independently and performs a 

specific task. These components communicate with each 

other through well-defined APIs and protocols [50]. 

Features: 

• Modularity: Microservices break down the application 

into small, loosely-coupled services that can be 

developed, deployed, and scaled independently. 

• Flexibility: Each microservice can be implemented 

using different technologies, which allows the use of the 

best tools for specific tasks. 

• Scalability: Microservices can be easily scaled 

horizontally to handle increased load, making the 

architecture particularly useful for applications that 

require high availability. 

In the proposed research, microservices architecture is 

used to encapsulate various machine learning models 

responsible for different tasks. For instance, each market or 

financial sensor can have its dedicated microservice to handle 

data ingestion, preprocessing, and machine learning model 

training (as described in Phase 1). 

During the real-time data processing (Phases 2 and 3), each 

microservice fetches its relevant data stream from Apache 

Kafka for model updating or real-time prediction. The 

modular nature of microservices allows for high throughput 

and quick updates, crucial for the fast-paced financial market 

analysis. 

The chosen best models for each microservice are stored in 

the database as BLOBs, enabling rapid and independent 

updates. By adopting a microservices architecture, the 

proposed system aims to achieve scalability, fault tolerance, 

and ease of maintenance, crucial for the robust and real-time 

analysis of stock markets. 

V. IMPLEMENTATION AND RESULTS 

A. Detailed Implementation Strategy 

The practical deployment of our proposed architecture 

involves leveraging cloud services and modern data 

processing frameworks to ensure scalability, reliability, and 

real-time performance. Here, we detail the implementation 

strategy using AWS services, focusing on the setup, 

configuration, and operation of the system components. 

1) Apache Kafka deployment 

Apache Kafka clusters are deployed on AWS to manage 

high-velocity data streams efficiently. Kafka’s distributed 

nature and fault tolerance make it ideal for handling real-time 

data feeds from various financial markets. The Kafka clusters 

are set up to ensure data is ingested, processed, and made 

available to downstream services without latency. 

2) Microservices architecture 

We employ AWS EC2 (Elastic Compute Cloud) instances 

to host independent microservices, each dedicated to specific 

tasks such as data ingestion, preprocessing, model training, 

and prediction. These microservices are designed to 

communicate seamlessly, ensuring a cohesive operation 

while retaining the flexibility to scale individual components 

as needed. For instance, one EC2 instance may host a 

microservice for real-time data ingestion from the Yahoo 

Finance API, fetching market data at predetermined intervals. 

3) Database and model management 

A dedicated EC2 instance is used to host the database, 

responsible for storing processed data, model parameters, and 

prediction results. This centralized approach ensures data 

consistency and provides a single source of truth for model 

performance metrics and historical predictions. The database 

plays a crucial role in model selection, storing the 

performance metrics of various models and enabling the 

system to select the best-performing model dynamically 

based on current market conditions. 

4) User request handling and prediction 

The system exposes an API endpoint, allowing users to 

request stock market predictions for specific entities and 

timeframes. Upon receiving a request, the system retrieves 

the most suitable machine learning model for the requested 

entity from the database. It then processes the latest market 

data, applies the model, and returns the prediction results in 

real time. This process ensures that users receive timely and 

accurate market insights, empowering them to make 

informed decisions. 

5) Security, compliance, and maintenance 

Throughout the architecture, security protocols are 

rigorously enforced to protect sensitive data and ensure 

compliance with industry standards and regulations. Regular 

maintenance routines, including system updates, model 

retraining, and performance monitoring, are established to 
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keep the system optimized and aligned with the latest market 

dynamics. 

By following this detailed implementation strategy, 

practitioners can realize the full potential of the proposed 

architecture, deploying a robust, scalable, and real-time stock 

market prediction system in a real-world environment. 

B. Challenges in Real-world Implementation and 

Scalability 

While our proposed architecture demonstrates promising 

results in an experimental setup, deploying such a system in 

a real-world environment comes with its unique set of 

challenges. This subsection outlines the potential obstacles 

and considerations that practitioners may encounter when 

implementing and scaling the architecture outside of a 

controlled experimental framework. 

1) Integration with legacy systems 

One of the primary challenges in deploying modern data-

driven solutions is their integration with existing legacy 

systems. Financial institutions often rely on outdated, 

monolithic systems that are not designed to interact 

seamlessly with modern microservices-based architectures. 

Ensuring compatibility, data consistency, and minimal 

downtime during integration requires meticulous planning 

and a phased implementation approach. 

2) Data privacy and security 

Financial data is highly sensitive, and any system dealing 

with such data must adhere to stringent security standards and 

regulatory requirements. Implementing robust encryption 

protocols, access controls, and regular security audits are 

crucial to protect data integrity and confidentiality. 

Additionally, navigating the complex landscape of financial 

regulations and ensuring compliance add layers of 

complexity to the deployment process. 

3) Handling high data volume and velocity 

The sheer volume and velocity of data in the financial 

domain can overwhelm systems that are not designed for 

scalability. Architectures must be capable of scaling 

horizontally to accommodate spikes in data influx, especially 

during market volatility. This involves deploying load 

balancers, auto-scaling groups, and distributed databases, 

ensuring that the system remains responsive and accurate 

even under heavy load. 

4) Model robustness and continual learning  

Financial markets are dynamic, and models that perform 

well under certain conditions may become obsolete as market 

dynamics shift. Ensuring model robustness and implementing 

continual learning mechanisms are essential to maintain 

prediction accuracy. This requires setting up pipelines for 

continuous data ingestion, model evaluation, and retraining, 

coupled with mechanisms to detect and adapt to concept drift 

in real-time. 

5) Operational complexity and maintenance  

Operating a complex, distributed system with numerous 

moving parts introduces operational challenges. Regular 

maintenance, monitoring, system updates, and 

troubleshooting are vital to ensure smooth operation. 

Implementing comprehensive logging, monitoring solutions, 

and automated alerting systems are critical to promptly 

identify and address issues, minimizing downtime and 

service disruptions. 

By addressing these challenges and considering these 

factors, practitioners can enhance the robustness, scalability, 

and real-world applicability of the proposed stock market 

prediction architecture, ensuring that it not only performs 

well in experimental setups but also delivers reliable results 

in practical, real-world scenarios. 

C. Metric for Evaluation: R2 Score 

In this study, the efficacy of our machine learning models 

is assessed primarily using the R2 score, also known as the 

coefficient of determination. This metric is chosen due to its 

effectiveness in representing the proportion of the variance in 

the dependent variable that is predictable from the 

independent variables. It offers a comprehensive measure of 

how well the model captures the variability in the dataset. 

R2 Score: The R2 score is a statistical measure and is 

mathematically defined as follows: 

 R2 = 1 − 
∑ (yi-ŷi)2n

i=1

∑ (yi-y̅)2n
i=1

 (1) 

where yi represents the actual values, ŷi represents the 

predicted values by the model, ȳ is the mean of the actual 

values. 

The R2 score is a normalized measure ranging between 0 

and 1. An R2 score of 1 indicates perfect prediction accuracy, 

signifying that the model’s predictions perfectly match the 

actual data. On the other hand, a score of 0 implies that the 

model performs no better than a simple mean-based 

prediction. This metric is particularly useful for comparing 

the performance of different models on the same dataset and 

for evaluating the model’s ability to capture the variance in 

the data. It is a standard measure in regression analysis, 

providing a clear indication of the goodness of fit of the 

model. 

D. Result 

1) Machine learning 

The results of the performance evaluation for various 

entities using Convolutional Neural Network (CNN), Gate 

Recurrent Unit (GRU), and Long Short-Term Memory 

(LSTM) models are presented in Table 2. This table 

illustrates the R2 scores achieved by each model across a 

diverse range of entities, including different companies and 

financial pairs. The highest R2 score for each entity is 

highlighted in green, indicating the model that best predicts 

the stock price movement for that particular entity. From the 

table, it is evident that the performance of each model varies 

significantly across different entities. For instance, the LSTM 

model shows superior performance for the Royal Bank of 

Canada and Microsoft, while the GRU model excels in 

predicting for Google and Apple. Similarly, the CNN model 

demonstrates its strength with high scores in predicting for 

entities like EUR/USD and Amazon.  

In addition to the tabulated results, a plot visualizing these 

performance metrics is provided (see Fig. 4). The plot offers 

a graphical representation of the R2 scores, making it easier 

to compare the performance of the three models across the 

various entities. Through this visualization, we can observe 
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the trends and patterns in model performance, providing a 

clear and comprehensive view of the strengths and limitations 

of each model in different contexts. 

 
Table 2. Performance comparison of CNN, GRU, and LSTM for various 

entities 

Entity CNN GRU CNN 

Royal Bank of Canada 0.92 0.61 0.93 

Google 0.80 0.96 0.47 

EUR/USD 0.97 0.92 0.74 

Apple 0.87 0.93 0.83 

Microsoft 0.84 0.87 0.94 

Amazon 0.90 0.68 0.84 

Tesla 0.71 0.80 0.51 

Meta 0.91 0.94 0.86 

XRP 0.81 0.84 0.89 

 

 
Fig. 4. Comparative Performance of CNN (green), GRU (red), and LSTM 

(blue) for various entities. The plot showcases score variations across models 

for key entities, emphasizing their distinct performance metrics. 

 

Overall, these results highlight the importance of model 

selection in stock market prediction. The variability in 

performance across different entities underscores the need for 

a dynamic approach in choosing the appropriate model for 

each specific market condition, which is a key aspect of the 

research presented in this thesis. 

2) Scalability 

The comparative analysis, as summarized in Table 3, 

showcases distinct improvements in throughput, latency, 

training time, market analysis capacity, and scalability. For 

throughput, represented by θ in the baseline model, our 

proposed model achieves an increased rate, denoted as θ + Δθ. 

This signifies a higher data processing capability per second, 

crucial for real-time analytics. Latency, a critical factor in 

real-time systems, is reduced in the proposed model (L − ΔL), 

thereby offering quicker response times compared to the 

baseline (L). 

 
Table 3. Comparative analysis of model performance using symbolic 

representation 

Performance Metric Baseline Model Proposed Adaptive Model 

Throughput (GB/s) θ θ + ∆θ 

Latency (s) L L − ∆L 

Training Time (min) Tbase Tbase − ∆T 

Market Analysis 

Capacity 
M markets in Tbase 

M + ∆M markets in Tbase − 

∆T 

Scalability Limited Enhanced 

 

Furthermore, the training time for the models is indicated 

by Tbase for the baseline and Tbase − ΔT for the proposed model. 

This reduction in training time is essential for faster model 

updates and adaptability to market changes. The market 

analysis capacity, which reflects the number of markets 

analyzed within a certain timeframe, is also enhanced in the 

proposed model (M + ΔM markets in Tbase − ΔT), compared 

to the baseline model (M markets in Tbase). Finally, the 

scalability of the system is qualitatively assessed, with the 

proposed model offering enhanced scalability over the 

baseline, which is crucial for handling large-scale financial 

data.  

This comparative analysis underscores the efficacy of the 

proposed adaptive model in handling the dynamic and 

demanding environment of stock market prediction, 

achieving significant improvements over traditional models. 

E. Discussion 

The comprehensive analysis of our results reveals the 

nuanced complexities of employing machine learning for 

stock market prediction. This study’s core insight is the 

demonstrable efficacy of a dynamic model selection approach, 

which is essential in navigating the inherently volatile and 

diverse nature of financial markets. 

1) Dynamic model selection in varied market conditions 

A pivotal finding of our research is the distinct 

performance variations of CNN, GRU, and LSTM models 

across different financial entities. This variation is not 

random but indicative of the unique characteristics inherent 

in each market or stock. For example, LSTM’s superior 

performance with the Royal Bank of Canada, in contrast to 

GRU’s effectiveness for Apple and Google, highlights the 

necessity of a context-sensitive approach in model selection. 

Similarly, CNN’s proficiency in predicting the EUR/USD 

currency pair underscores its suitability for forex market 

dynamics.  

The dynamic model selection system proposed in this 

research is thus not merely a technical solution but a strategic 

approach to stock market prediction. By continuously 

assessing and selecting the most appropriate model based on 

real-time market data, our system ensures enhanced accuracy 

and adaptiveness in predictions. This real-time adaptability is 

crucial, particularly in the stock market, where patterns and 

trends can shift rapidly, and the cost of inaccuracy is high. 

2) Scalability and real-time performance 

Another key aspect of our system is its demonstrated 

scalability and efficiency in high-throughput environments. 

As the volume of market data increases, our architecture 

maintains its performance integrity, handling multiple 

markets with low latency and high throughput. This 

capability is vital in the fast-paced realm of financial trading, 

where delays can lead to missed opportunities or significant 

financial losses. 

The system’s ability to scale and perform under increased 

workload is not just a technical merit but a critical feature for 

real-time financial applications. This scalability ensures that 

our system can adapt to growing data volumes and evolving 

market conditions without compromising on speed or 

accuracy. 

VI. CONCLUSION 

The work detailed in this thesis successfully demonstrates 

the integration of machine learning algorithms, Apache 

Kafka, and microservices architecture to establish a dynamic 
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and efficient framework for real-time stock market prediction. 

This approach is characterized by its adaptability and 

effectiveness across different markets and timeframes, 

achieved through a strategic three-phase implementation. 

The initial phase focuses on developing and evaluating 

machine learning models, where their performance is 

assessed rigorously using the R2 score as the primary 

evaluation metric. This singular focus on the R2 score, a 

measure of the variance in the dependent variable that is 

predictable from the independent variables, ensures a 

consistent and straightforward metric for model performance 

evaluation. Phases 2 and 3 integrate these models into a real-

time data processing and prediction system, effectively 

handling high-velocity and diverse data streams. 

This architecture stands out by addressing the limitations 

of previous models, which are typically constrained to 

specific markets or timeframes. The system’s continuous 

evaluation and updates of its models ensure the selection of 

the most accurate model for each market condition at any 

given time. The high R2 scores achieved in the evaluation 

phase validate the robustness and accuracy of our approach. 

The adaptability and efficiency of this architecture hold 

significant promise for extension to other domains beyond 

stock market prediction, addressing a notable gap in the 

existing literature on financial analytics. 

In conclusion, this research marks a pivotal step in the field 

of real-time financial analytics. It opens new avenues for 

future research to extend and refine real-time data analysis 

methodologies. The scalable and adaptable framework 

presented in this thesis offers a novel paradigm in real-time 

analytics, with the potential to revolutionize not just the 

domain of stock market prediction but also various other 

sectors that require sophisticated real-time data analysis. 

While the architecture presented in this paper shows 

promising results in the realm of stock market prediction, it’s 

worth noting that its applicability could extend far beyond 

this specific domain. One avenue for future work is to explore 

how the architecture can be adapted and deployed in other 

real-time data-generating systems. The model switching 

feature that we proposed in this architecture could make it a 

versatile tool for solving complex, data-intensive problems in 

these domains. Furthermore, as the architecture is designed to 

be domain-agnostic, it has the potential to tackle challenges 

that are common across different fields requiring real-time 

analytics. Expanding the architecture to different domains 

would not only broaden its applicability but could also offer 

new insights into optimizing performance and reducing errors 

across various types of real-time data streams. Thus, future 

work will aim to test the generalizability and adaptability of 

the architecture in a broader range of applications, thereby 

contributing to the field of real-time data analytics as a whole. 
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