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Abstract—Renewable systems such as solar and wind are 

intermittent by nature. This attribute makes integrating them 

on a large-scale generation difficult for optimum utilization. Due 

to this challenge, several forecasting models have been 

developed to address the issue. The problems of the existing 

methods forecasting models are computational complexity, 

overfitting and low accuracy. This paper proposes a deep 

learning model called Long Short-Term Memory (LSTM) to 

forecast solar energy radiation using meteorological features. 

Selected hyperparameters of the proposed LSTM model are 

optimized with the Grid Search Cross-Validation 

(GridSearchCV) method. Four Machine Learning (ML) 

methods, Support Vector Regression (SVR), Random Forest 

Regression (RFR), Extreme Gradient Boosting (XGBoost) 

regression, and stacked RF-XGBoost, are investigated as 

benchmark models for the proposed LSTM-GridSearchCV 

model. The experimentation results revealed that the proposed 

method is superior to the benchmark ML model regarding 

accuracy and performance errors technique and capable of 

accurately forecasting the solar energy system. It can help the 

practitioner make accurate decisions on integrating renewable 

energy into a large-scale system.  

 
Keywords—forecasting, renewable energy, machine learning, 

ensemble learning, hybrid 

I. INTRODUCTION 

The global electricity demand requires sustainable 

development and significant concern for climate change. 

Fossil fuels like oil, coal and natural gas are major 

contributors to greenhouse gas emissions, environmental 

depletion and global warming. The exhaustible prediction of 

fossil fuels is becoming a reality [1]. Global electrical power 

sector requires a significant transition from fossil fuel to 

renewable resources, such as solar and wind energies, to 

address the effects of fossil fuel contributions on the 

ecosystem. Renewable energy resources are available 

everywhere; they are clean, ecosystem-friendly, and the 

cheapest to generate electrical power [2, 3]. Renewable 

energy systems are subject to inherent variability and 

uncertainty. Factors such as weather conditions, seasonal 

variations, and changes in energy demand create a dynamic 

environment that sets significant challenges for accurate 

forecasting [4, 5]. Accurate and dependable forecasting of 

renewable energy production has become an essential aspect 

of modern energy management through the implementation 

of computer and engineering theories. The pivotal roles of 

computer theories, such as artificial intelligence, help to 

maximize the potential of renewable energy sources and 

ensure efficient integration into existing power grids. 

Forecasting involves predicting the future output of 

renewable energy based on historical data, meteorological 

conditions, and other influencing factors [6]. This enables 

power grid decision-makers, operators, and energy traders to 

make informed conclusions, schedule maintenance activities, 

optimize energy dispatch, and improve general grid stability. 

Recently, researchers and experts have been vigorously 

developing sophisticated forecasting methods to tackle the 

intermittency and uncertainty of renewable energy resources. 

Some forecasting studies are based on two essential 

conditions: forecasting-based time horizons and forecasting 

methods. Some studies also combined these two conditions. 

Forecasting based on time horizon is categorized into four: 

very short-term, which is between a few seconds to 30 min; 

short-term, which is between 30 min to 6 h; medium-term, 

which is between 6 hours to one day; and long-term, which is 

between one day upward. In practice, the shorter the time 

horizon of the forecasting category, the higher the accuracy 

of the forecasting method. Nonetheless, each time horizon 

has distinctive bids in renewable energy systems [7, 8]. 

The existing forecasting methods for solar and wind energy 

are grouped into four major models: numerical, statistical, 

intelligent, and hybrid. Numerical methods use 

meteorological data from observation equipment. The 

shortcomings of this method are the initial conditions, which 

must be accurate but cannot be guaranteed, and it requires a 

vast amount of data that is not economical [9, 10]. On the 

contrary, the statistical and intelligent methods consider 

renewable forecasting a random development centred on 

historical data to obtain time-varying connections in time 

series [11, 12]. Some statistical techniques implemented 

include Hidden Markov Model (HMM) [13, 14], Box Jenkin 

Methods such as Autoregression (AR), Moving Average 

(MA), Autoregression Moving Average (ARMA), 

Autoregression Integrated Moving Average (ARIMA), 

Autoregression Moving Average with eXogenous (ARMAX), 

Seasonal Autoregression Integrated Moving Average 

(SARIMA) [15–17], and Kalman method [18]. Statistical 

models are acceptable due to their simplicity in forecasting 

time series models. However, the drawbacks of these 

statistical models are the inability to process nonlinear and 

complex systems and the handling of vast datasets. The 

current and emerging solution to the challenges faced by 

statistical models is the implementation of artificial 

intelligence methods. This includes machine learning (i.e., 

Artificial Neural Network (ANN), Support Vector Machine 

(SVM), Fuzzy Inference System (FIS), deep learning, 

Recurrent Neural Network (RNN), Convolutional Neural 

Network (CNN), Deep Neural Network (DNN)) and 
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reinforcement learning techniques. Artificial intelligence 

methods can process the nonlinearity and complexity of 

renewable energy. In forecasting applications, they 

outperformed the numerical and statistical models.  

The organization of this paper is arranged as follows. 

Section II presents review of recent related study on solar 

radiation forecasting. Section III summarizes the theoretical 

overview of the ML models proposed in this study. 

Section  IV provides the details of the research methodology, 

including the data preprocessing method, the flowchart of the 

proposed method and the performance evaluation metrics. 

The experimental results and analyses of the proposed models 

are presented in Section V. Lastly, Section VI gives the 

conclusion of the entire study. 

II. REVIEW OF RELATED STUDIES ON SOLAR RADIATION 

FORECASTING 

As part of the efforts to address the challenges of 

variability and uncertainty of solar renewable energy, 

researchers have explored several machine learning 

algorithms to forecast the availability of renewable energy. 

ANN was used in [19, 20] to forecast solar energy systems. 

The researches of Piri et al. [21] and Mohammadi et al. [22] 

applied Support Vector Regression (SVR) to different 

meteorological data to predict solar radiation. The two studies 

compared polynomial and radial basis kernel functions, and 

the results showed that the radial basis kernel function 

outperformed the polynomial kernel function.  

Ramli et al. [23] investigated SVR and ANN on a tilted 

Photovoltaic (PV) surface; the results revealed that the SVR 

performed better than the ANN method. Generally, 

traditional MLs have several drawbacks, which limit their 

forecasting capability. These flaws are computation 

complexity, overfitting and lack of generalization. Efforts 

were made in some studies to improve the performance 

accuracies of these traditional methods by implementing 

optimization algorithms. 

In the quest to increase the forecasting capability of ANN, 

Moayedi and Mosavi [24] applied an Electromagnetic Field 

Optimization (EFO) algorithm, Asrari et al. [25] used 

shuffled frog leaping algorithm, and Marquez and 

Coimbra  [26] employed Genetic Algorithm (GA). Also, 

some steps have been taken to boost the capacity of SVR, 

VanDeventer et al. [27] implemented GA, and  

Moazenzadeh et al. [28] used the Cuckoo Search Algorithm 

(CSA). These optimization algorithms were used to tune the 

hyperparameters of the ANN and SVR. The results were 

superior to the traditional algorithm. However, these methods 

still exhibited local minimum and premature convergence. 

Particle Swarm Optimization (PSO) was used to tune the 

hyperparameters of Extreme Learning Machines (ELM) for a 

very short-term solar energy forecasting in [9]. The proposed 

model was compared with linear and autoregression but 

outperformed those models.  

Solar energy time-series data was decomposed using the 

seasonal decomposition technique. The output of the 

decomposition technique was trained using Least Square 

SVR (LSSVR), which was optimized with GA [29]. The 

decomposition technique strengthened the forecasting ability 

of the proposed model. In Ref. [3], solar radiation dataset was 

decomposed into multiple Intrinsic Mode Functions (IMFs) 

and residual components using the ensemble mode 

decomposition method. Gravitational Search Algorithm 

(GSA) optimized LSSVR to train IMFs and residual 

components outputs. The k-means approach was applied to 

cluster all the features, and different cluster weight was 

determined using the ensemble method. This study only 

considered the univariate time series, and the proposed model 

can experience local premature convergence. A combined 

fuzzification model based on a hesitant fuzzy set was 

developed for solar energy power generation, and the model 

parameters were optimized using a modified chaotic 

equilibrium algorithm. Two unimodal and two multimodal 

benchmark functions were employed to validate the model, 

which resulted in good accuracy [30]. However, rule 

complexity and lack of generalization are the major 

challenges of any fuzzy model. 

A short-term solar radiation forecasting model was 

proposed using three decomposition techniques and an 

Adaptive Neuro-Fuzzy Inference System (ANFIS). The 

decomposition techniques are Empirical Mode 

Decomposition (EMD), Ensemble Empirical Mode 

Decomposition (EEMD) and Complete Ensemble Empirical 

Mode Decomposition with Adaptive Noise (CEEMDAN). 

Corresponding IMFs and Residuals based on Pearson’s 

Correlation Coefficient (PCC) were extracted using the three 

decomposition techniques. Output from the three 

decomposition techniques was used to train the ANFIS [31]. 

The proposed model performed better because of the 

decomposition techniques. A distributed multi-horizon 

method that combined a variant of ANN called Spatial-

Temporal Attention-based Neural Network (STANN) with 

the Federated Learning (FL) method to forecast 5–30 min of 

solar radiation. STANN model comprises an encoder and 

decoder framework consisting of a spatial feature extractor 

and a forecaster [32]. This proposed method outperformed the 

benchmarked model but has an interpretability drawback.  

Several deep-learning methods have been implemented in 

solar energy forecasting. RNN was combined with GA to 

forecast solar radiation of Limpopo Province of South Africa, 

and the result was compared with the KNN method [33]. A 

deep CNN algorithm called Solar Network (SolarNet) was 

used to predict solar energy [34]. This technique was 

benchmarked with SVR, ANN, LSTM, RF, and Decision 

Tree (DT). The SolarNet outperformed the benchmarked 

methods. LSTM was optimized with a Bayesian optimization 

algorithm for a very short-term solar radiation forecast [35]. 

The study implemented autocorrelation analysis and linear 

correlation analysis for data preprocessing. The benchmarked 

methods are the persistence method, autoregression and SVR. 

Consideration of cloud detection and meteorological data 

enhanced the performance of the proposed method. 

Furthermore, hybrid deep learning methods have been 

implemented to predict the availability of solar radiation. 

LSTM combined with CNN was implemented by Kumari and 

Toshniwal [36]. LSTM mined the temporal features, while 

CNN mined the spatial characteristics of the weather 

variables. One hot clearness index and feature extraction were 

applied in the study. The results outperformed the 

benchmarked techniques. A hybrid forecasting framework for 

multiple renewable systems was developed by  

Zheng et al. [37]. CNN conducted an extraction of local 
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correlations among renewable energy sources. Attention-

based LSTM (A-LSTM) was utilized to mine nonlinear time-

series features of renewable resources data, and the 

Autoregression method captured the linear characteristics of 

the renewable systems. Moreover, LSTM with Auto-Encoder 

(AE) technique using historical PV power and weather 

dataset was proposed by Cheng et al. [38]. The mined hidden 

features were concatenated, and then a multilayer perceptron 

was utilized to decode the features. The proposed method 

forecasts day-ahead solar power. 

The strengths of the ensemble machine learning methods 

to handle any time series and regression models have 

encouraged their applicability in the world of renewable 

energy forecasting. XGBoost-based featurization technique 

was proposed to conduct data preprocessing, feature 

extraction and sorting of renewable energy consumption in 

Ref. [39], Temporal convolutional network and multi-head 

attention models were adopted for learning, and the Bayesian 

statistical method was employed for optimization. In Ref. 

[40], influential factor analysis to obtain optimal combination 

was carried out on the weather, PV panel status and solar 

power generation dataset for short-term solar power 

forecasting. EEMD with adaptive noise and independent 

component analysis was implemented to extract the intrinsic 

time-series mode of solar power generation. An attention-

based Bayesian Sequence-to-Sequence technique was used to 

develop the relationships between influential factors and solar 

power systems. Bayesian optimization tuned the model 

hyperparameters. This model can exhibit premature 

convergence. 

In order to predict the PV power of the Yulara system, a 

sequential ensemble mode consisting of LSTM with Maximal 

Overlap Discrete Wavelet Transform (MODWT) was 

proposed by Sharma et al. [41], MODWT decomposed the 

time-series components, and LSTM mined the nonlinearity of 

the PV system. Bagging, Boosting, Stacking, and Voting 

Ensemble Learning methods were explored based on 

meteorological parameters in [6]. The results revealed that 

Stacking and Voting ensemble methods outperformed others. 

In Ref. [42], an XGBoost with deep neural networks was 

proposed for hourly global horizontal irradiance forecast. 

Ridge regression was adopted for integration to prevent 

model overfitting. Three locations in India were considered. 

The proposed method is superior to the benchmarked models 

with a prediction error of 33% to 40% but has a higher 

computation time. 

The literature review shows that the existing research has 

proved the abilities of the various forecasting models in one 

way or another. Also, it revealed that no method can solve all 

the challenges of solar energy forecasting, which means the 

“No Free Launch Theory” applies to all machine learning 

models. To handle the above-mentioned shortcoming in this 

study, a novel LSTM-GridSearchCV model is proposed for 

the forecast of solar radiation and compare the model with 

several benchmark models. The main contributions of this 

paper are:  

1) A deep learning model, LSTM, is proposed to 

forecast global horizontal radiation for solar 

renewable energy system, 

2) Some selected hyperparameters of the LSTM model 

is optimized with a grid search cross-validation 

method that results to GridSearchCV-LSTM model. 

3) The proposed LSTM-GridSearchCV model is 

benchmark with three different ML models (SVR, RF 

and XGBoost) and grid search CV versions. 

The accuracy and efficiency of solar power forecast 

depends on the forecasting model. This study explores four 

classical ML models for forecasting the global horizontal 

radiation of solar system to reveal the most efficient of the 

four models. Also, a grid search cross-validation method is 

proposed to tune the hyperparameters of the four ML models 

to achieve a better configuration and scalability of the solar 

forecasting models. Hyperparameters are significant factors 

that influence the performance of machine learning models. 

Careful tuning of the hyperparameters increases the 

accuracies and simultaneously reduces errors in the models to 

achieve state-of-the-art results performance. Lastly and to 

further prove the effectiveness, accuracy and generalization 

of the proposed model, a stacked ensemble model of RF and 

XGBoost models is conducted to perform solar radiation 

forecasting. 

III. THEORETICAL OVERVIEW 

This section presents the theoretical concepts of the study’s 

proposed ML models. The ML models are SVR, RF, 

XGBoost and LSTM. Also, a review of previous empirical 

related studies on solar radiation and power forecasting is 

presented. 

A. Support Vector Machine (SVM) 

Many studies have proved that the SVM algorithm can 

process linear and nonlinear data. Nonlinear mapping 

transforms the original training data into a higher dimension. 

A linear optimal hyperplane of a new dimension is then 

determined after transforming the original data. The linear 

optimal hyperplane is the decision boundary that separates 

the tuples of one class from another [43]. The strengths of 

SVM are flexible kernel selection, outlier robustness, 

effective high-dimension space and adjustable trade-off 

between accuracy and simplicity. However, the benefits of 

SVM are kernel selection flexibility, robustness to outliers 

and effective high-dimensional space, among others. This 

algorithm can effectively handle both the classification and 

regression tasks. The concept of SVM includes separating 

hyperplane, maximum-margin hyperplane, soft margin, and 

kernel function [44]. The mathematical expression of 

hyperplane is given as Eq. (1). 

 𝑤̅  ·  𝑥̅ + 𝑏 = 0  (1) 

where b is −𝑤̅  ·  𝑥0, This expression holds for ℝn where n > 

3, w is the weight vector, x is the input vector, and b is the 

bias. The hyperplane that maximizes the margin 
1

‖𝑤‖
 is 

subject to Eq. (2) constraints. 

 𝑦𝑖(𝑤𝑇  ·  𝑥𝑖 + 𝑏) ≥  1 (2) 

Instead of maximizing the margin
1

‖𝑤‖
, an equivalent 

objective function for minimizing ‖𝑤‖ is required, which is 

given as Eq. (3). 

 
𝑀𝑖𝑛
𝑤, 𝑏

 {
‖𝑤‖2

2
}   (3) 
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Eq. (4) gives the mathematical expression for soft margin 

hyperplane when slack is introduced according to Vapnik. 

 𝑦𝑖(𝑤𝑇  ·  𝑥𝑖 + 𝑏) ≥  1 −  𝜉𝑖  (4) 

where 𝜉𝑖  ≥ 0 is called the slack. Therefore, the solution for 

the soft margin optimization problem is the objective function 

in Eq. (5). 

 
𝑀𝑖𝑛

𝑤, 𝑏, 𝜉
  

1

2
𝑤𝑇𝑤 + 𝐶 ∑  𝜉𝑖

𝐽
𝑖=1  (5) 

The objective function is subject to Eq. (5) for 𝑖 =
1, 2, … , 𝐽  and 𝜉𝑖  ≥ 0,  where 𝐶  represents the penalty 

parameter. 

B. Long Short-Term Memory (LSTM) 

Varieties of ANN models have evolved, including CNN 

and DNN. The input vectors of these variants are independent 

of one another. RNN, in contrast to CNN and DNN, generates 

sequential information from time series data, uses the hidden 

state to store previous information and updates new ones 

regularly. It can be applied to various dynamic systems for 

prediction [45]. In other instances, the RNN output can serve 

as input to create a well-defined dynamic system. It functions 

effectively in time series applications and has a distinctive 

deep structure. However, the complicated training methods 

discovered during tuning are to blame for RNN’s 

shortcomings. Learning the long-term dependencies is 

difficult due to this procedure’s typical vanished or exploded 

gradient difficulties. LSTM and Gated Recurrent Unit (GRU) 

were suggested to remedy this RNN vulnerability [46, 47]. 

These algorithms are RNN variations that can learn long-term 

dependencies from time series data to produce sequential 

information. The LSTM has a memory cell (hidden layer) that 

retains data and uses gating machinery to determine new 

carries recursively. The output gate, update gate and forget 

gate are those [45, 48]. Cell state 𝑐  is the most important 

component of LSTM functioning. 

The LSTM architecture is represented in Fig. 1. 𝑛 is the 

number of sets and 𝑥𝑘  𝜖 ℛ𝑛 is the input set. The first gate, the 

forget gate, governs the information desired to be superfluous 

from the cell state based on the former procedure and is 

expressed as Eq. (6). 

 𝑓𝑘 =  𝜎(𝑊𝑓  [ℎ𝑘−1, 𝑥𝑘] + 𝑏𝑓) (6) 

where 𝜎  and 𝑏𝑓  denotes the sigmoid nonlinear activation 

function and the bias function of the forget gate, respectively. 

 

 

Fig. 1. LSTM block layer structure. 

 

The LSTM second block is the update gate 𝑝𝑘; it controls 

the volume of information in the memory cell. It includes an 

input gate 𝑖𝑘  and the candidate carry 𝑐̂ . The input gate 𝑖𝑘 

describes the memory state values that need to be updated 

while the candidate carry, 𝑐̂, identifies the candidate value 

that requires an update in the memory state. The formulations 

of these three components are expressed in Eqs. (7)–(9). 

 𝑖𝑘 =  𝜎(𝑊𝑖   [ℎ𝑘−1, 𝑥𝑘] +  𝑏𝑖) (7) 

 𝑐̂𝑘 =  𝑡𝑎𝑛ℎ(𝑊𝑐   [ℎ𝑘−1, 𝑥𝑘] +  𝑏𝑐) (8) 

 𝑝𝑘 =  𝑖𝑘   𝑐̂𝑘  (9) 

where 𝑏𝑖 and 𝑏𝑐 are the bias functions of the input gate, and 

candidate carry, tanh and hyperbolic are tangent functions, 

respectively. The updated memory state 𝑐𝑘  is given as 

Eq.  (10). 

 𝑐𝑘 =  𝑝𝑘 + 𝑓𝑘  𝑐𝑘−1 (10) 

Moreover, the third gate of LSTM involves the output gate 

𝑜𝑘  and the LSTM output layer ℎ𝑘 . The output gate 𝑜𝑘  is 

expressed as Eq. (11). 

 𝑜𝑘 =  𝜎(𝑊𝑜   [ℎ𝑘−1, 𝑥𝑘] + 𝑏𝑜) (11) 

where 𝑏𝑜 is the bias function of the output gate. 𝑜𝑘 is applied 

to update the chosen function ℎ𝑘 , and it is formulated as 

follows: 

 ℎ𝑘 =  𝑜𝑘   𝑡𝑎𝑛ℎ(𝑐𝑘) (12) 

𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , and 𝑊𝑜  are the trainable weight vectors of the 

LSTM layers. The LSTM neural network implementation can 

manage the time-consuming task of learning to store 

information for lengthy periods through recurrent 

backpropagation. 

C. Random Forest (RF) Regressor 

RF regressor is a Bagging Ensemble Learning (EL) 

approach that uses a bootstrap technique to combine the 

predictions output of several Decision Tree (DT) algorithms. 

The reason behind the development of the RF algorithm is to 

obtain a more accurate result compared to individual DT 

models. RF utilizes a deterministic approach to select a 

random input set from the training dataset to independently 

develop all the base trees. Research has proved RF’s capacity 

to effectively handle massive datasets with large input 

variable quantities without deletion [49, 50]. RF is efficient 

in handling nonlinear systems such as solar energy systems. 

Three crucial hyperparameters require tuning in RF 

implementation. These include the number of estimators, 

maximum depth and minimum sample leaf. Careful tuning of 

these hyperparameters increases the accuracy of the RF 

regressor; which may become difficult. 

D. Extremely Gradient Boosting (XGBoost) 

The XGBoost ensemble approach is highly scalable and 

capable of handling various machine-learning issues, 

according to Chen and Guestrin’s initial 2016 proposal. It 

creates high-performance models and uses gradient boosting 

to reduce decision tree model faults. It is primarily employed 

in classification and regression applications [49, 51]. 

Overfitting is avoided in XGBoost due to the loss function’s 

𝑐𝑘−1 

ℎ𝑘−1 

𝑥𝑘 

ℎ𝑘 

𝑐𝑘 

∏ 

* 

tanh 

 

∑ * 

𝜎 𝜎 𝜎 tanh 

* 

Forget Update Output 

𝑐̂𝑘 

𝑖𝑘 
𝑓𝑘 

𝑜𝑘 

𝑝𝑘  
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regularization terms [52]. Consider a dataset 𝑆 =  {𝑥𝑖 , 𝑦𝑖} that 

includes independent and dependent variables. The entire 

number of samples in the dataset, as stated by the gradient 

boosting approach, is represented by 𝑖 𝜖{0, … , 𝑗}. Eq. (13) can 

be used to get the predicted estimates, 𝑦̂, at a sample 𝑖, where 

𝐷 is the total number of decision trees in the model. 

 𝑦̂ =  ∑ 𝑓𝑝𝑥𝑖
𝐷
𝑝  (13) 

where 𝑓𝑝𝑥𝑖 is the predicted count up of the instance 𝑖 for the 

𝑝𝑡ℎ  tree. The efficiency of the XGBoosting algorithm is 

improved by adding a regularization method and formulating 

an objective function to optimize the loss function by 

applying the results of the preceding base learner.  

Eqs. (14)–(16) provide the mathematical formulation of the 

original objective function 𝐽 , the loss function, and the 

regularization term. 

 𝐽 =  ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑝)𝐷

𝑝=1  (14) 

 𝑙(𝑦𝑖 , 𝑦̂𝑖) =  ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1  (15) 

 Ω(𝑓) =  𝜁𝑇 +  
1

2
𝛾 ∑ (𝑋𝑏

2)𝑇
𝑏=1  (16) 

where 𝑛 is the number of instances processed at the 𝑝𝑡ℎ trees 

and 𝑦̂𝑖  is the predicted output. 𝑇  represents the overall 

number of lead nodes in the regression decision tree, 𝑏 

represents the identification index of each leaf in a node, and 

𝑋  represents the weight of a specific leaf node. The 

complexity constraint, 𝜁 , regulates the least loss decrease 

gain mandatory for excruciating an internal node. and 𝛾 

denotes customization parameters. Studies have proved that 

assigning high values to 𝜁 and 𝛾 results in a straightforward 

decision tree structure and reduced risk of overfitting [49, 51]. 

Applying a second-order Taylor Approximation to the 

objective function 𝐽 produces the optimized version. 

 𝐽∗ =  ∑ [𝑔𝑖𝑓𝑚(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑚

2]𝑛
𝑖=1 +  Ω(ℎ𝑚) (17) 

The 𝑔𝑖  represents the first derivative while ℎ𝑖  represents 

the second derivative of the cost function. The final cost 

function in the sample 𝑆𝑗 is determined by totalling the degree 

of the loss of all the leaf nodes 𝑗; then, the objective function 

is formulated as Eq. (18): 

 𝐽𝐹 =  ∑ [
(∑ 𝑔𝑖𝑖𝜖𝑆𝑗

) 𝑤𝑗

+ 
1

2
(∑ ℎ𝑖 +  𝛾𝑖𝜖𝑆𝑗

) 𝑤𝑗
2

] +  𝜁𝑇𝑇
𝑗=1  (18) 

where 𝑤 is the weight of the tree leaves. Compared to other 

ML techniques, the XGBoost method has many benefits. It 

incorporates regularization terms throughout the modelling 

procedure and can manage overfitting. In the training process, 

XGBoost handles missing input values. It can conduct 

parallel feature engineering computation. Nonetheless, 

training on an unbalanced dataset yields less accurate results. 

Another disadvantage is the boosting method’s large number 

of hyperparameters, which makes algorithm adjustment 

challenging [53]. 

E. Stacking EL Method 

An EL approach called stacking aggregates predictions 

from many ML algorithms. The approach was implemented 

to lessen the generalization error associated with ML 

problems [54]. The basic idea of stacking is to apply base 

learners’ predictions as input metadata to another learner, 

referred to as the meta-learner, to train the predicted metadata. 

The meta-classifiers are trained using the predictions as 

features to create the final prediction results. A meta-

classifier is a traditional classifier that combines the best base 

learners’ predictions. Level 0 learners (multiple ML-based 

algorithms) are base learner algorithms, whereas level 1 

learners are meta learners [55]. Stacking is the term used to 

describe the meta-learners fit the prediction output of base 

learners. The stacking structure has three significant stages: 

the first is when the selected algorithms train the input dataset. 

The second is the generation of a new dataset from the 

predicted output of the base learners. The presumed target 

forms the new variable, while the early target variable 

remains the new target variable for the new dataset. The third 

step is training the meta-learner with the newly generated 

dataset. Linear classifiers like logistic regression algorithms 

are commonly engaged as meta-classifiers [45]. Considering 

a training dataset 𝐷 such that: 

 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} (19) 

𝐷 is trained with base learners and obtained the prediction as 

Eq. (20), the new dataset is constructed as {𝑥̂𝑖  𝑦𝑖} in Eq. (21). 

Eq. (22) is the final prediction model, which was obtained by 

applying a meta-classifier ℎ̂ to train the newly constructed 

dataset. 

 ℎ𝑡 = 𝐿(𝐷𝑡) (20) 

 𝑥̂𝑖 =  {ℎ1(𝑥1), ℎ2(𝑥2), … , ℎ𝑇(𝑥𝑖)} (21) 

 𝐻(𝑥) =  ℎ̂(ℎ1(x), ℎ2(x), … , ℎ𝑇(𝑥)) (22) 

Part of the significant benefits of stacking is the exploration 

of generalization and diversity of different base learners using 

the same input dataset. High accuracy is also one of the 

advantages of the stacking method [55]. Nonetheless, a large 

stacking dataset can lead to high computational costs because 

the entire dataset trains every base learner. 

IV. RESEARCH METHODOLOGY 

This section presents the method carried out for the 

proposed ML solar radiation forecasting model. Also, the 

data preprocessing approach, model development technique 

and performance evaluation metrics are discussed. Fig. 2 

illustrates the flowchart for this study. 

 

 
Fig. 2. The flowchart to implement LSTM model. 
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A. Data Source and Preprocessing 

Supervised machine learning algorithms heavily depend on 

the dataset. This study uses the Australia Alice Spring dataset 

collected from April 1, 2016, to April 20, 2023. The dataset 

consists of Solar Global Horizontal Irradiance variable and 

meteorological weather variables such as temperature, 

humidity, wind speed, wind direction, and time information, 

including hour and minute to be forecasted [56]. 

Generally, data preprocessing is a worthy step in historical 

time series forecasting. In the research work, data 

preprocessing began with data cleaning. The less important 

features and the missing instances were removed. The whole 

dataset is then preprocessed using a standard scaler technique 

to make the data suitable for the forecasting models. Eq. (23) 

expresses the mathematical formulation of the standard scale. 

 𝑍 =
𝑥−𝜇

𝜎
 (23) 

where µ and σ are the mean and standard deviation of the 

feature. 

The initialization of the ML models was carried out on the 

Python package by importing the library of each ML model. 

The preprocessed dataset is split into training, validation, and 

test sets in the ratio of 0.7:0.15:0.15 using the sklearn model 

selection library on the same package. The validation and test 

ratios ensure the generalization of the forecasting models. 

The based model and the benchmarked models were trained 

using the percentage ratio of the training data and validated 

with the validation set. On the completion of the validation 

process of the base models, a GridSearchCV approach was 

considered for base model hyperparameters tuning.  

B. Grid Search Cross-Validation (GridSearchCV) 

ML models have two categories of parameters: model 

parameters and hyperparameters. Model parameters are 

internal to the models, such as weight and bias. The values of 

these parameters are learned or predicted during the model 

training time. Hyperparameters are tunable or adjustable 

parameters to increase the performance of ML models. This 

study uses the GridSearchCV technique to get the best 

hyperparameters of the proposed base model (LSTM) for 

solar radiation forecasting. Fig. 3 shows the flowchart used 

for implementation of GridSearchCV method. 5 K-fold is 

used to carry out the GridSearchCV hyperparameters 

optimization for the proposed base model and the 

benchmarked models. Table 1 presents the hyperparameters 

tuned in this study. 

 
Table 1. Model hyperparameters selected for tuning 

Model Hyperparameters 

SVR 

C 

Gamma 

Kernel 

Verbose 

RF 

n_estimator 

Max_features 

Min_sample_split 

XGBoost 

n_estimator 

Max_depth 

Learning_rate 

Subsample 

LSTM 
LSTM model unit 

Dropout rate 

 
Fig. 3. The flowchart to implement GridSearchCV method. 

 

C. Performance Evaluation 

In this study, three performance metrics were employed to 

conduct a performance evaluation of the proposed forecasting 

model. The metrics are: 

1) R Score (R2) measures the accuracy of the forecasting 

models; its mathematical formulation is expressed as 

Eq. (24). 

 𝑅2 =  
∑ (𝑦̂𝑛− 𝑦̅)2𝑛

𝑖=1

∑ (𝑦𝑛− 𝑦̅)2𝑛
𝑖=1

 (24) 

2) Relative Mean Square Error (RMSE): Eq. (25) 

provides the RMSE mathematical expression. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1  (25) 

3) Mean Absolute Error (MAE): This metric is 

calculated using Eq. (26). 

 𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦̂𝑖 − 𝑦𝑖|𝑛

𝑖=1  (26) 

where 𝑛, 𝑦̂𝑖 , and 𝑦𝑖  are the total number of data instances, 

radiation predicted and actual value, respectively. 

V. RESULTS AND DISCUSSIONS 

This section presents the experimental results and 

discussions of the proposed LSTM-GridSearchCV, and the 

benchmarked models implemented to forecast solar radiation 

based on the Australia Alice Spring dataset. The 

benchmarked models are SVR, RF, XGBoost and LSTM. 

The results are offered based on the R2 score, RMSE, and 

MAE performance metrics of each model deployed for this 

study. To show the competitiveness of our proposed LSTM-

GridSearchCV model, the implementation results of four 

benchmarked ML models and their GridSearchCV 

hyperparameters optimization were used for comparisons. It 

can be noted in comparison with the benchmarked models are 

state-of-the-art models for time series forecasting problems. 

It was discovered that the performance of the proposed 

LSTM-GridSearchCV model is superior to these 

benchmarked models. Table 2 presents the values of 

performance metrics utilized to evaluate the ML models. 
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Initialize the Grid 

SearchCV Algorithm 

Set the LSTM Model 
Hyperparameters 

Create GridSearchCV 
Object with LSTM 

Hyperparameter 

Best 

Hyperparameters 

Obtained? 
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Best Hyperparameter 
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Table 2. The performance evaluation results of the solar radiation 
forecasting models 

Models/Metrics R2 RMSE MAE 

SVR −0.8781 223.4884 133.1767 

RF 0.9209 86.3731 33.8162 
XGBoost 0.9097 92.1977 44.1099 

LSTM 0.9394 0.2065 0.0427 

SVR-GridSearchCV 0.3549 184.8368 117.7760 
RF-GridSearchCV 0.9234 84.6716 33.802 

XGBoost-GridSearchCV 0.9205 86.3062 34.9371 

Stacked RF-XGBoost-GridSearchCV 0.9230 84.9717 35.7048 
LSTM-GridSearchCV 0.9487 0.0382 0.0167 

 

A. SVR Forecasting Results 

The RMSE and MAE performance errors obtained from 

the SVR-GridSearchCV investigation were lower than the 

classical SVR. Fig. 4 illustrates the plot of predicted and 

actual values for the SVR and SVR with the GridSearchCV 

method. The SVR-GridsearchCV method produced a better 

result in handling the degree of dispersion due to high rate of 

daily fluctuation and unpredicted nature of global solar 

radiation than the classical SVR. This results from the 

implementation of k-fold cross validation that resampling the 

solar energy radiation data. 

 

 

 
Fig. 4. The predicted vs actual SVR and SVR-GridSearchCV. 

 

B. RF Forecasting Results 

The R2 investigation on the RF-GridSearchCV method is 

greater than the classical RF method. Conversely, the 

performance errors of the RF-GridSearchCV are lower than 

those of the classical RF. The RF and its optimized version 

have considerable errors due to excellent performance 

attributed to the tree-based ensemble models. Fig. 5 presents 

the plot of the predicted and actual values for the RF and RF 

with the GridSearchCV method. Also, the RF method is 

superior to the Stacked RF-XGBoost-GridSearchCV method, 

as revealed in Table 2. 

 

 

 
Fig. 5. The predicted vs actual RF and RF-GridSearchCV. 

 

C. XGBoost Forecasting Results 

The R2 result XGBoost-GridSearchCV is greater than the 

classical RF methods. Also, the performance errors of the 

XGBoost-GridSearchCV are greater than that of the classical 

XGBoost. This investigation shows that the XGBoost-

GridSearchCV method is superior to the classical XGBoost 

method. Fig. 6 presents the plot of predicted and actual values 

for the XGBoost and XGBoost with the GridSearchCV 

method. 
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Fig. 6. The predicted vs actual of XGBoost and XGBoost-GridSearchCV. 

 

D. LSTM Forecasting Results 

The R2 scores of the LSTM and LSTM-GridSearchCV are 

0.9394 and 0.9487, respectively. The RMSE and MAE values 

obtained are 0.0382 and 0.0167, respectively. The classical 

LSTM model produced a good accuracy and low 

performance errors in capturing the variability of solar 

radiation. Moreover, the specialized memory cells and gating 

mechanisms that retain information over a long-time step of 

the LSTM, its hierarchical representation learning of 

sequential data combined with GridSearchCV 

hyperparameters optimization approach strengthened the 

performance of the proposed LSTM-GridSearchCV and the 

model came out to be the best of the models investigated in 

the study.  

 

 

Fig. 7. The RMSE and MAE values of the investigated models. 

 

Generally, the performance of several solar radiation 

forecasting models is presented in Table 2 and Figs. 4 to 7. 

With an R2 value of 0.3549, the SVR-GridSearchCV model 

can describe 35.49% of the variation of solar radiation and 

the meteorological data. This model has a high level of 

forecasting error as shown in the result table. With R2 score 

of 0.9234, RF-GridSearchCV model outperformed the RF, 

XGBoost, XGBoost-GridSearchCV and stacked RF-

XGBoost-GridSearchCV models with R2 of 0.9209, 0.9097, 

0.9205 and 0.9230 respectively. LSTM model is more 

superior to all the model mentioned above with an R2 of 

0.9394. the proposed LSTM-GridSearchCV model had the 

highest R2 score of 0.9487, this shows that it performed more 

better than other solar radiation forecasting models. Also, the 

proposed model exhibited the best accuracy in predicting 

solar radiation as revealed by it much lower RMSE and MAE 

results 0.0382 and 0.0167, respectively, compared with 

benchmarked models. Based on these results obtained, it can 

be resolved that the optimization of LSTM hyperparameters 

with GridSearchCV method can effectively forecast solar 

radiation.  

VI. CONCLUSION 

A study of solar radiation forecasting was conducted in this 

research; an LSTM-GridSearchCV model was proposed to 

forecast global horizontal radiation using the Australia Alice 

Spring dataset, which was collected from April 1, 2016, to 

April 20, 2023. The dataset includes solar radiation and 

meteorological features. The dataset was preprocessed using 

a standard scaler technique before the ML models fitted it. 

Four classical ML models (SVR, RF, XGBoost and stacked 

RF-XGBoost) and their GridSearchCV optimized version 

were utilized to benchmark the proposed model. The results 

revealed that the GridSearchCV approach is superior to 

classical ML models. The LSTM-GridSearchCV 

outperformed all other models considered in this study. The 

values of performance metrics are R2 scores equal 0.9487, 

RMSE equals 0.0382, and MAE was 0.0167. Furthermore, 

this study proves that the LSTM-GridSearchCV can 

accurately forecast solar energy radiation. It can help the 

practitioner make accurate decisions on integrating 

renewable energy into a large-scale system. The future work 

of this study is the implementation of other deep learning 

methods. Deploying metaheuristic algorithms to optimize 

models’ hyperparameters can help enhance solar radiation 

forecasting. 
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