
An Energy-Efficient VM Selection Using Updated Dragonfly

Algorithm in Cloud Computing

Ajay Prashar* and Jawahar Thakur

Department of Computer Science, Himachal Pradesh University, Shimla-171005, Himachal Pradesh, India

Email: ajayprashar93@gmail.com (A.P.); jawahar.hpu@gmail.com (J.T.)
*Corresponding author

Manuscript received September 20, 2023; revised October 19, 2023; accepted February 7, 2024; published July 11, 2024

Abstract—Cloud computing is popular among industries,

academia, and government to supply reliable and scalable

computational power. High-speed networks in cloud data

centers connect Virtual machines with Physical Machines.

Virtualization assists the cloud service providers to manage

resources effectively but unoptimized and inefficient services

degrade the performance of the system. The scheduling

architecture of cloud computing includes Physical Machines

(PMs), Virtual Machines (VMs) and the allocation and

migration policy of the VMs over the PMs. The overutilized PMs

get few migrations and this paper introduces novel behavior of

VM selection from overutilized PMs using Swarm intelligence.

The evaluation of the proposed algorithm architecture is

compared with another state-of-the-art optimization algorithm

from the same series. The evaluation has been done on the base

of Quality of Service (QoS) parameters, such as Service Level

Agreement (SLA) violation, and energy consumption against

various load variation scenarios to support elasticity. The

proposed algorithm has outperformed other techniques by

considerable margin in terms of QoS, and the details are

presented in the results section. The simulation results

demonstrate that the proposed technique exhibits 6.3% and

6.7% enhancement in terms of reduced energy consumption

compared to both Cuckoo Search (CS) and general Dragonfly

(DF) techniques, and 3% decrease in SLA violations in

comparison to current methods. Additionally, the results reveal

an 11% enhancement in VM migration compared to existing

approaches.

Keywords—cloud computing, Virtual Machine (VM)

placement, migration, dragonfly, Cuckoo Search (CS)

I. INTRODUCTION

Cloud computing is the most intriguing concept for today’s

businesses in the IT sector. The exchange of information is

widespread globally over the internet [1]. There is a

tremendous amount of data that must be retained and

constantly transmitted using the Internet in the cloud center.

Cloud computing offers a wide range of services in different

prospects such as Infrastructure as a Service (IaaS), Platform

as a Service (PaaS), and Software as a Service (SaaS) [2].

More specifically, the popular cloud services attract the

attention of huge companies such as Google, Microsoft, IBM,

and Wipro that make centralized data centers across the world.

Cloud centers consist of physical hosts in thousands that

consume a significant amount of energy. Therefore,

companies keep on building more and more data centers

while the cloud resources of current data centers are still not

fully utilized [3]. However, cost-effective services require the

delivery of efficient and affordable utilization of Virtual

Machines (VM) [4]. For the energy-efficient data center,

virtualization is the key technology to provide interoperable

and flexible services.

Utilization of machine learning in combination with

Swarm Intelligence (SI) has been observed as a solution to

the VM selection policy from over-utilized Physical

Machines (PMs). The collective behavior of decentralized,

self-organizing systems, which draws inspiration from the

coordination seen in natural swarms, is referred to as swarm

intelligence. It makes use of the interactions of simple agents

to solve issues in a complex and adaptable way. This method

is frequently used to simulate the flexibility and efficiency

observed in social insect colonies or bird flocks in domains

including robotics, optimization, and artificial intelligence.

Algorithms such as particle swarm optimization and ant

colony optimization can be included in swarm intelligence

models. Parvizi and Rezvani [5], Ghasemi and Toroghi

Haghighat [6] demonstrated the usage of meta-heuristics, also

referred to as SI for the selection of the VM selection policy

along with the utilization of machine learning [7].

The generalized allocation process and placement scheme

of VM are illustrated in Fig. 1 [8]. In this paper, we focused

on VM allocation and migration process by assuring that

minimum power is consumed by the machines with minimum

violation of service level. Virtualization is a key technology

to make the Data Centre (DC) energy efficient while

balancing the load [9]. Therefore, VMs can be migrated,

deleted, and created among the host machines depending

upon the usage of power. VM management that is energy

efficient is extended to task scheduling, consolidation of

workload, request batching, selection of mobile service,

choosing the remote or local clouds, etc.

Fig. 1. Network of host machine and virtual machine [8].

Commercial applications for virtualization require more

computational resources than the complimentary resources

that lead to migration of VM in the cloud computing platform.

Moreover, complementary resources cannot extend beyond a

limit and loads must be handled effectively without any

violations of service level and Quality of Service (QoS). In

such a case, two types of migrations take place namely the

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

76DOI: 10.7763/IJCTE.2024.V16.1356

mailto:ajayprashar93@gmail.com
mailto:jawahar.hpu@gmail.com

migration from overloaded hosts and the migration from

under loaded hosts [10–12]. The migration of virtual

machines occurs across both over and underload servers to

achieve load balancing, transferring workloads from

overwhelmed servers to servers with available resources, all

while ensuring the requirements of QoS-sensitive

applications are met. An under-loaded server is one that is not

efficiently utilizing its available resources. In other words, it

has excess CPU, memory, or other resources that are not

being fully utilized. Under-loaded servers are inefficient and

can lead to wasted resources and higher operational costs.

Addressing server overloads and under-loads is critical for

maintaining the efficiency, performance, and cost-

effectiveness of a cloud data center. Live VM migration,

server consolidation, dynamic resource allocation, and load

balancing are all valuable tools and techniques to manage and

optimize server resource usage in Dynamic Voltage and

Frequency Scaling (DVFS)-enabled cloud data centers [13].

Different migration algorithms were developed to determine

the utilization status of VMs and migrate the underutilized

VMs to the less utilized ones when there are sufficient

resources. The existing studies focus on a selection of VM

using metaheuristic and energy-efficient techniques such as

learning automata and the Analytical Hierarchy Process

(AHP). However, such techniques are limited to utilizing the

power in the case of heavily loaded machines. The current

studies focus on migrating the VMs considering the

utilization of resources of VM, CPU utilization, target

systems, QoS, and VM requirements for target systems.

Therefore, the main contribution of this work is as follows:

• An improved meta-heuristic-based algorithm

architecture for the selection of the VMs.

• A comparison architecture for the proposed meta-

heuristic architecture with other state-of-the-art

algorithms of the same series.

• An integrated training and classification architecture for

the rank generation of the VMs based on their migration

mechanism.

• Comparative analysis of the proposed model with the

existing techniques has been presented in terms of

different quality of service parameters.

The remainder of the paper is arranged as follows:

Section II discusses the current techniques for efficient

migration of VM. the research methodology in which

optimization models for VM placement and migration are

implemented and their features are analyzed in Section III.

The results and discussion are represented in Section IV and

finally conclusion is presented in Section V.

II. RESEARCH BACKGROUND

The VM allocation problem is defined using the notations.

Consider a cloud DC having p q racks and each contains

hosts (h). The number of total hosts (𝑇𝐻) is computed using

the Eq. (1) [14].

 𝑇𝐻 = 𝑝 × 𝑞 × ℎ ()

The cloud infrastructure consists of users 𝑈 =
{𝑢1, 𝑢2, 𝑢3 … , 𝑢𝑛} where n is the total number of users. The

users submit their requests on the cloud data center either by

themselves or via brokers. The cloud data center has P

number of PMs and V number of VMs and the PMs and the

VMs can be represented as a set PMs = {p1, p2, p3 …, P} and

VMs={v1, v2, …, V}. As the VMs are associated with the PM

in order to execute the request generated from the users, the

VMs use the resources of the PMs. Higher job volume will

increase the load on the system and hence the CPU will be

more utilized as the power. Considering the literature studies,

CPU utilization is the main power consumption factor of the

cloud [15, 16]. For this, there is a need to determine the direct

relation between the usage of power and the performance of

the CPU of the cloud host. The determination of accumulative

usage of resources of allocated VMs to a specific host

machine is determined by computing the CPU power utilized

by the host in Million Instructions per Second (MIPS). The

CPU consumed by the host is computed by dividing the total

CPU capacity of the associated VMs by the CPU utilization

of the host machine is given as follows:

 𝐶𝑃𝑈𝑢 = ∑
𝑣𝑗𝑐𝑝𝑢

𝑃𝑖𝑐𝑝𝑢

𝑉𝑘
𝑗=1 ()

where k is the total number of VMs associated with ith PM.

There is a degradation of the performance of the VM due

to outages of resources during the execution that will cause

Service Level Agreement Violations (SLA-V) and downtime

of the VM. Thus, the total degradation of VM performance is

computed as per the work. Further, the migration of the VM

and overutilization time of the host is considered to compute

the migration of the VM in a given time slot. The VMs are

migrated from one PM to another based on the conditions

shown in Eq. (3) as follows:

 𝑓(𝐶𝑃𝑈) = {
−1, 𝑝𝑖𝑐𝑝𝑢

≤ min
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐶𝑃𝑈𝑢 ∀ 𝑣

1, 𝑝𝑖𝑐𝑝𝑢
≥ max

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐶𝑃𝑈𝑢 ∀ 𝑣

 ()

The function returns −1 which denotes that all the VMs

from the current PM 𝑝𝑖 will be migrated as the PM is not

utilizing it. Here, 30% CPU utilization is referred to as the

minimum threshold and 70% as the maximum threshold.

In such a scenario, no algorithmic architecture is required

to select the VMs as all the VMs have to be migrated. In the

second scenario, the function returns 1 when the CPU

utilization of the current PM 𝑝𝑖 exceed the maximum

utilization limit of the CPU. In this scenario, the PM is

considered to be overloaded and some of the VMs are

selected in order to bring the overutilized PM to a normalized

PM category. The total consumed power, referred to as Power

Consumption (PC) is the sum of idle PC and execution PC

defined in Eq. (4) as follows:

 𝑃𝐶 = 𝑃𝐶𝑖𝑑𝑙𝑒 𝑣𝑗
+ 𝑃𝐶𝑒𝑥𝑣𝑗

 ()

where 𝑃𝐶𝑒𝑥𝑣𝑗
 is the execution cost at 𝑣𝑗 VM for any PM,

𝑃𝐶𝑖𝑑𝑙𝑒 𝑣𝑗
is the idle cost of vmj the execution cost can be

computed using Eq. (5) as follows.

 𝑃𝐶𝑒𝑥𝑣𝑗
= 𝐶𝑃𝑈𝑢𝑣𝑗

 𝑝𝑢𝑐𝑣𝑗 ∀ 𝑃𝑀𝑖
 ()

where 𝐶𝑃𝑈𝑢𝑣𝑗
 is the CPU utilization of 𝑣𝑗 VM and “puc” is

the per unit cost of execution under 𝑃𝑀𝑖 .

When a user is associated with the cloud server, the cloud

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

77

server agrees to the service terms which are generally referred

to as Service Level Agreement (SLA). In the case of

mathematical computing, the violations made to SLA are

called SLA-V and are calculated based on any computation

QoS parameter. Here in the case of the proposed work, the

SLA-V is computed based on power consumption as shown

in Eq. (6).

 (𝑆𝐿𝐴 − 𝑉) = {
0, 𝑃𝐶𝑖 ≤ 𝑡ℎ

𝑥, 𝑥 =
𝑃𝐶𝑖−𝑡ℎ

𝑡ℎ

 ()

where “th” is the threshold of power consumption of each pm

“i”.

An appropriate placement and VM migration are done

through an effective utilization of resources, and to reduce the

consumption of energy. The challenges and various issues

noticed in VM migration are analyzed considering the

different QoS parameters. The main challenges are generally

relying on continuity of network connection, and migration

of data considering the storage and memory aspects. Several

studies were conducted considering these aspects and some

of these are discussed to determine the research gap.

Ruan et al. [17] suggested a method for determining the host

machine’s optimal operating utilization levels. To make an

idea workable given that performance and power statistics

must be measured on actual platforms, a method called “PPR

Gear” considers the different sampling levels of utilization

and calculates Performance-to-Power Ratios (PPR). The

authors also provide a framework for allocating and

migrating virtual machines that make use of the PPR for

different host types. The framework can guarantee that host

computers operate at the most power-efficient level by

striking the ideal balance between host utilization and energy

consumption. Wei et al. [18] presented an exact algorithm to

deal with the bin packing problem of idle and working

machines. The experiment was performed considering the

small, medium, and large-scale data instances from DCs. The

authors developed the best-fit algorithms that were used to

combine the fit rules considering the computation time with

regards to PM and VM. The algorithm performance was

computed for different instances and total energy

consumption with different variants provided a suitable

maximum number of resources in order to fulfil service level

agreements [19]. An essential technology in cloud computing

is virtualization. Creating several VM instances, helps cloud

providers manage data center resources effectively, which

improves resource use. In order to meet acceptable Service

Level Agreement (SLA) criteria, this study introduces a novel

machine-learning-based method for dynamically integrating

Virtual Machines (VMs) based on adaptive forecasts of

utilization thresholds. Ahmadi et al. [20] presented a flexible

approach for addressing the challenge of VM selection in the

cloud computing environment. They utilized a hierarchical-

based process for decision-making. The simulation analysis

performed using 1000 VMs resulted in a reduction of energy

consumption by 23% with 49% reduced VM migrations. This

results in reduced better overall performance. Khan and

Santhosh [21] proposed a hybrid optimization approach in

this research effort to manage the migration of VMs in a cloud

environment. The suggested hybrid optimization model was

created by combining the Cuckoo Search (CS) and Particle

Swarm Optimization (PSO) algorithms. This research’s main

goal is to cut down on energy use, calculation time, and

migration expenses. Another goal of this research project is

to maximize resource use. The effectiveness of the hybrid

simulation study is confirmed through simulation analysis

and compared with traditional algorithms in terms of

performance metrics to justify the research objective. From

the results, it is acquainted that energy consumption using the

proposed technique is 0.470 watts with a load of about 0.0025.

However, the migration performance is still limited which

may have achieved using the multi-optimization technique. A

detailed comparative analysis of various existing VM

allocation techniques is tabulated in Table 1.

Table 1. Comparison of existing VM allocation techniques

Reference Technique Evaluation tool Improved Metrics Workload and Data Center

Abdessamia

et al. [22]

Virtual Machine Placement

using the Gravitational Search
Optimization algorithm

Simulation using the

MATLAB tool

Energy consumption, and no. of active

server

Artificial and Synthetic

(heterogeneous servers)

Abdel-Basset
et al. [23]

VM migration using the Wolf

optimization algorithm with
levy flight

Simulation using the
CloudSim

CPU utilization, and no. of physical
server

PlanetLab and Synthetic
(cloud user-customized VMs)

Parvizi and

Rezvani [5]

Metaheuristic approach for

VM placement

Simulation using the

CloudSim toolkit

CPU utilization, resource loss, energy

consumption, and execution time.

PlanetLab and Synthetic

(cloud user-customized VMs)

Rasouli
et al. [24]

VM placement using the
Learning Automata approach

Simulation using the
CloudSim toolkit

SLA violation, energy consumption, and
number of VM migration

PlanetLab and Synthetic
(cloud user-customized VMs)

Ghasemi and

Haghighat [6]

Load balancing and migration

using Machine Learning

Simulation using the

CloudSim toolkit

Migration cost for VM, execution time,

and number of shut down server

PlanetLab and Synthetic

(cloud user-customized VMs)

Azizi and

Li [25]

Heuristic-based VM

migration technique
Simulation using C++

Energy consumption, wastage of
resources, CPU utilization, and number

of active servers

Artificial and Synthetic, Real

world

Wei et al. [18]
Exact method-based VM

placement

Simulation using

Gurobi solver and
Python

Computation time, energy consumption,

number of active servers, and utilization
of resources

Artificial and Real-world

(Google Datacenter)

Aboamama and

Hamouda [26]

Genetic Algorithm-based VM

placement

Simulation using

MATLAB

Energy consumption, Wastage of

resources, and elapsed run time

Artificial and real-world Data

Using Travelling Salesman
Problem

Tarahomi

et al. [14]
Micro genetic approach

Simulation using the

CloudSim toolkit

SLA violation, energy consumption,

number of server shutdown

PlanetLab using the Real

workload

Shirvani
et al. [27]

Energy-Efficient VM
Placement

MOD-JAYA Power Consumption, Resource Wastage
Cloud Data Centers, Multi-
Objective Optimization

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

78

From the above literature, it is clear that there is a need for

an energy-efficient VM placement technique using the

optimization approach as most of the researchers are

inefficient in providing the optimized VM placement

technique. However, some of the techniques are still limited

which may have been achieved using the multi-optimization

technique. Some of the researchers were limited to applying

the Machine Learning technique for efficient placement.

Therefore, carefully understanding the literature work, it is

clear that there is a need for optimization techniques to

optimize the VM placement Equipped with Machine

Learning techniques.

III. ENERGY EFFICIENT PLACEMENT AND MIGRATION OF

VM

The energy consumption is dominated during the

assignment of VM to PM in VMMP cloud DC. Whenever a

computational request is assigned to the data centre then

deployment of the request has been done for specific

configurations considering the different computational

resources such as CPU utilization, execution time, and

memory size. The execution process is done after assigning

the VM to the PM. The simultaneous execution process of

VM to PM consumes an enormous amount of energy.

Additionally, the numbers of PMs are arranged in a cluster or

group and the PMs in the cluster are turned off until the

assignment of VM in the group. However, frequent

shutdowns will incur serious damage to the system by

consuming a lot of energy, and idle machines also consume

energy even VM is not hosted by the server. Thus, efficient

computational resources are provided to the customer by

maintaining the Makespan time, energy consumption, and

service cost during the development of schedules.

The proposed dragonfly-based optimization model is based

on the selection and migration of VMs for efficient placement.

Optimization models such as firefly, Cuckoo search, ant

colony optimization, and many more such models are

developed in the cloud for energy-efficient placement. But,

still, the presented works are limited to addressing the

respective features for VM placement and selection for

migration. This research incorporates different optimization

techniques such as Particle Swarm Optimization (PSO), Ant

Colony Optimization (ACO), Cuckoo Search (CS), and

Dragonfly (Df).

The implementation has been done using these techniques

and performance is compared further to determine the best

results. The main problem during the VM placement is given

as:

• In the procedure of resource allocation, two different

cases are considered. In the first case, the PM is

considered overloaded due to the number of user

requests more than available slots. In such a scenario,

additional computational resources can reduce the

overload but it is going to increase the Cost of

Investment (CoI) and will reduce the Return on

Investment (RoI).

• In the second case, the VM requests are less but PM still

available to provide services. Therefore, a state of idle

PM exists that also consumes the power to satisfy the

requirements of other users as shown in Fig. 2.

Fig. 2. VM migration and placement.

To avoid the above two problems, VM migration is

employed considering the different aspects such as migration

cost, energy consumption, allocation of resources, and

computational utilization of resources. The cloud parameters

considered in this research are illustrated in Table 2 and

include a set of PMs, VMs, Memory, and requirement of

bandwidth for PM and VM. These parameters are essential

for performing the simulation analysis, and affect the overall

performance. The constraints considered for placement of

VMs (VM) to PMs (PM), and Quality of Service (QoS)

objectives: Energy consumption, SLA violation, and

Makespan are considered. In the VMPA scheduling, a set of

PMs are hosting the set of VMs constrained by CPU and

utilization of memory. For a feasible placement, the CPU

demand of the VM (𝐶𝑃𝑈𝑉𝑀) under the CPU capacity which

is provided by PM (𝐶𝑃𝑈𝑃𝑀) ensuring that (𝐶𝑃𝑈𝑉𝑀 ≤
𝐶𝑃𝑈𝑃𝑀). Similarly, the memory demand is utilized by PM

(𝑀𝑃𝑀) and meet the demand for respective VMs (𝑀𝑉𝑀)

ensuring that (𝑀𝑃𝑀 ≥ 𝑀𝑉𝑀) . PM hosts the set of VMs

considering the CPU, memory and time, and the placement is

considered a 3D-bin packing problem. In two different levels,

active PM and VM consume enormous energy. The PM will

consume energy in the range of [𝐸𝑃𝑀
− , 𝐸𝑃𝑀

+], that relies on the

energy-efficient [𝐸𝑃�̃�] of the hosted VM (Vm).

Table 2. Simulation parameters

S. No. Parameter Value

1. Number of DC’s 5

2. Total number of PM’s 10–100

3. Total number of tasks 25–57
4. Total number of VMs 100–1000

5. Memory (VM) 2 Gb

6. Memory (Host) 4 Gb
7. CPU capacity of Host (MIPS) 1000–3000

8. CPU capacity of VM (MIPS) 250–1000

9. Bandwidth of VM 100 Mbit/sec

10. Bandwidth of PM 1 Gbits/sec

11. Gradient Value 6.48

12. Workload coefficient 0.1–0.4

A. Proposed VM Selection Approach Using Dragonfly

(DF) Algorithm

In 2016, Mirjalili [28] developed the dragonfly algorithm

which is one of the most effective algorithm architectures

from the meta-heuristic series. The DF algorithm is based on

either the efficient hunting procedure of the dragonflies or the

aspects of the migration of the dragonflies from one end to

another or one field to another. DF is an interesting nature-

inspired algorithm devised to solve complex optimization

problems. Dragonflies are small flies that are carnivorous and

eat a large number of bees, ants, butterflies, and mosquitoes.

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

79

There are around 2800 different species of dragonflies, and

their lifecycle is different. They consist of two stages, one is

adult and the other one is a nymph. The working mechanism

of the dragonflies is based on static and dynamic behaviors

the former is based on the feeding mechanism and later is a

migratory mechanism. In case of the static behavior, the

group formation of the dragonflies is limited to a small group

size whereas in the case of dynamic behavior, the swarming

size becomes high. Furthermore, the static and dynamic

behavior constitutes the exploration and exploitation phase

respectively. In the exploitation phase, dragonflies in the

swarm fly over long distances in one direction and distract

from harmful flies (enemy). In the exploration phase, there is

a small group that flies back and forth over a small area to

attract prey for food. The features related to Dragonfly in

different contexts are as follow:

• Dragonfly topology is a scalable and fault-tolerant

network design used in high-performance computing. It

excels in efficient routing, low-latency communication,

and supporting numerous compute nodes, crucial for

data exchange in computing environments.

• DragonFlyBSD is an open-source Unix-like OS with

features like the HAMMER file system for advanced

data management. It uses lightweight kernel threads and

supports Symmetric Multiprocessing (SMP), making it

versatile for desktop and server applications.

• They have compound eyes, transparent wings, and agile

flight patterns. These predators play a vital ecological

role by hunting other insects.

• In the realm of Unmanned Aerial Vehicles (UAVs),

“Dragonfly” denotes agile small drones used for

surveillance, reconnaissance, and data collection. Their

versatility, maneuverability, and applicability to civilian

and military tasks are their defining features.

• Dragonfly topology is designed to optimize resource

allocation, which includes efficiently distributing

computational tasks across the available CPUs while

keeping power consumption in check. This makes it a

valuable choice for high-performance computing

environments where balancing computational power

with energy efficiency is essential.

The proposed work utilizes CPU utilization and power

consumption as major deciding and evaluation parameters for

the dragonflies. The five different principles in the case of

dragonflies have been utilized.

Separation (S): It represents the avoidance from the

neighbors to avoid collision. It is mathematically modelled as

given below:

 𝑆𝑢 = − ∑ 𝑃 − 𝑃𝑣
𝐹
𝑣−1 ()

where P is the position of the firefly and 𝑃𝑣 is the position of

the neighboring individual and F is the number of flies in the

neighbor.

Alignment (A): It is the speed of the dragonfly through

which it propagates towards its global best solution. In other

words, the speed of the fly matches with neighborhood flies

swarming in the same group. The alignment is given as

follows:

 𝐴𝑢 =
∑ 𝑉𝑣

𝐹
𝑣−1

𝐹
 (8)

where 𝑉𝑣 is the velocity of the vth fly in the group.

Cohesion (C): It is the tendency of individual dragon flies

towards the center of the global best position in the centre of

the group.

 𝐶𝑢 =
∑ 𝑃𝑣

𝐹
𝑣−1

𝐹
− 𝑃 ()

Attraction: The flies attracted toward the food are

mathematically modelled as:

 𝐹𝑆𝑢
= 𝑃𝐹𝑆

− 𝑃 (10)

where 𝐹𝑆𝑢
 is the food source of the fly and 𝑃𝐹𝑆

 is the position

of food source.

Distraction (D): The distraction from the enemies is

mathematically modelled as:

 𝐸𝑢 = 𝑃𝐸 + 𝑃 (11)

where 𝐸𝑢 denotes the enemy position of uth individual, and

𝑃𝐸 is the position of the enemy.

The workflow for the proposed work can be demonstrated

using the following workflow diagram as shown in Fig. 3.

When dealing with discrete state problems, such as those

found in many cloud computing and resource allocation

scenarios (e.g., allocating VMs to physical servers), it's

important to adapt the algorithm or use a different approach

that is more suitable for discrete problems. k-means is used

to divide the allocations into 3 states as normal, overloaded

and under loaded.

The proposed DF algorithm works on levy flights and co-

relation in which for each levy flight, a dragon is either

awarded with a positive reward or a negative reward. There

are a total of 15 steps in the proposed DF algorithm that are

illustrated as follows in terms of algorithmic architecture.

Algorithm 1. Proposed Dragonfly Algorithm

Input: HL, where HL is the overload host list
 At is the allocation table
Output: V ML is the VM list to be migrated
[dg, dc] = kmeans(At, 3)

// divide the allocation table into 3 states as normal,
overloaded and underloaded.
Where dg is the dragon group and dc is the dragon
centroid [global food]
𝐅𝐨𝐫(i = 1 ∶ Len((𝐇𝟏))
 vms = 𝐅𝐢𝐧𝐝 (AL, HLs[i]) // Find all vms of concerned host
 drg = vms // consider vms as dragons
 𝐅𝐨𝐫(j = 1 ∶ Len(drg)
 Dgj = dg[j]; find the state of current dargon
 Lf = 10; //create a reward matrix that holds reward

value for each fight

 𝐅𝐨𝐫(𝐤 = 𝟏 ∶ 𝐢𝐟)
 Ep = 30; exp = 60; where ep and exp is swarm size

 percentage of exploitation and exploration.

 A = 𝐂𝐨𝐬(At[vms], C)/ 𝐄𝐮𝐜𝐥(At[drp], C); //Define

 alignment as the ratio of cosine similarity to Euclidean

 distance of all VM’s parameters to the global food

 parameter defined as cohesion
 S = Cos(At[drp], C)/Eucl(At[drp], C); // Define

 separation as the ratio of cosine similarity to

 Euclidean distance of the group parameters to the

 global food parameters defined as cohesion.
 [f, fv] = DragonFitness(A, S, C); where f is Boolean

 value for the fit unfit[1,0]and fv is the fitness value

 from the fitness function.

 If(f == 1) //Assign reward for the flight.

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

80

 R[k] = 100 − fv; //Assign reward for the flight
 𝐄𝐧𝐝𝐢𝐟
 Rm = Mean(R) // Compute mean of rewards
 𝐈𝐟 (Rm ≤ 60)

 Vml. append(drg[j]); //This VM is selected for the

 migration

 𝐄𝐧𝐝𝐢𝐟
 𝐃𝐞𝐟𝐢𝐧𝐞 𝐃𝐫𝐚𝐠𝐨𝐧𝐅𝐢𝐭𝐧𝐞𝐬𝐬[𝐀, 𝐒]
 F, fv = 𝟎
 𝐈𝐟(fv = (A − S)/A) ≤. 𝟑𝟎𝐟; 𝐄𝐧𝐝𝐢𝐟
 𝐑𝐞𝐭𝐮𝐫𝐧 f, fv
 𝐄𝐧𝐝 𝐃𝐫𝐚𝐠𝐨𝐧𝐅𝐢𝐭𝐧𝐞𝐬𝐬
 𝐄𝐧𝐝𝐅𝐨𝐫
 𝐄𝐧𝐝𝐅𝐨𝐫

𝐄𝐧𝐝𝐅𝐨𝐫
Return vml

The different features of the VMPA are formulated using

the proposed dragonfly algorithm is given as follows:

• The constraints of PMs such as utilization of CPU and

Memory capacity are considered for the placement of

VM to PM, 𝐶𝑃𝑈𝑉𝑀 ≤ 𝐶𝑃𝑈𝑃𝑀) and (𝑀𝑃𝑀 ≤ 𝑀𝑉𝑀) for

all feasible VM placements 𝑥𝑃𝑚𝑉𝑚.

• It is entirely pre-emptive which indicates that only one

VM can be hosted by PM at any time, ∑ 𝑥𝑃𝑚𝑉𝑚 ≤ 1𝑉𝑚

at any time t for a PM (𝑃𝑚).

• When the placement imitates, then it is acquainted that

the process must be ON before all VMs placed. The

Make span time is the earliest completion of VMs for

PMs, ∑ 𝑇𝑉𝑚
𝑉𝑚 𝑥𝑃𝑚𝑉𝑚𝑉𝑚 .

• In the proposed work scenario, two different types of

energy are considered in the processing energy during

the placement of VMs to PM. These are denoted by

processing energy (𝐴𝑒𝑛𝑒𝑟𝑔𝑦), and the idle energy

(𝐼𝑒𝑛𝑒𝑟𝑔𝑦) in which PM is in an active state but does not

host the VM. Thus, total energy consumption is the sum

of active energy and idle energy (𝑇𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐴𝑒𝑛𝑒𝑟𝑔𝑦 +

𝐼𝑒𝑛𝑒𝑟𝑔𝑦).

• The processing energy 𝐴𝑒𝑛𝑒𝑟𝑔𝑦 depends upon the

energy efficiency (�̃�𝑃𝑚𝑉𝑚 and execution time of VM

(𝑇𝑉𝑚
𝑉𝑚).

• The energy efficiency for the placement of VM to PM

is given as follows, where minimum and maximum

energy consumed by PM for one hour represented as

[𝐸𝑃𝑚
− , 𝐸𝑃𝑚

+].

• PM in idle state also consumes energy and is determined

by idle time and minimum energy consumed per hour.

 �̃�𝑃𝑚𝑉𝑚 = 𝐸𝑃𝑚
− + (𝐸𝑃𝑚

+ − 𝐸𝑃𝑚
−) · 𝑒

𝐶𝑃𝑈𝑉𝑀
𝐶𝑃𝑈𝑃𝑀 (12)

• Idle power consumption is computed by considering the

mth VM in an idle state and PM also in an idle state.

 𝐸𝑉𝑀𝑖

𝑖𝑑𝑙𝑒 = {

𝑃𝑜𝑤𝑒𝑟𝑠𝑒𝑟𝑣𝑒𝑟𝑙
𝑖𝑑𝑙𝑒 ∃

𝑧

𝑈𝑉𝑀𝑖
𝑧 = 100%

∑ 𝛼𝑧.𝑈𝑉𝑀𝑖
𝑧

𝑧

∑ 𝛼𝑧𝑧
· 𝑃𝑜𝑤𝑒𝑟𝑠𝑒𝑟𝑣𝑒𝑟𝑙

𝑖𝑑𝑙𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

where 𝛼𝑧 is the weight assigned to resource z and 𝑈𝑉𝑀𝑖

𝑧 is the

utilization of resource z by ith VM. Here, ∃ before z denotes

the existence of a value for the variable z such that the

condition that follows is true. It means that for at least one

value of z that meets the given criterion, the equation is

applicable.

This indicates that idle power consumed by the VM is

equivalent to the idle power consumed by the servers if there

is 100% utilization of the VM.

Fig. 3. The proposed workflow for the DF algorithm.

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

81

The proposed work uses modification in the dragonfly

fitness function to achieve the claimed outcomes. The

proposed dragonfly algorithm is implemented to compute the

efficiency of the PM to host the VM. The efficient utilization

of PM to avoid the wastage of power. In order to comprehend

the proposed algorithm, the proposed optimization algorithm

is also compared with other state-of-the-art algorithms as

given in the later sections. The parametric settings for the DF

algorithm are illustrated in Table 3 [29].

Table 3. Parameter settings for the dragonfly algorithm

Parameter Value

Number of Simulation Rounds 100

Number of search agents 5
Search Domain [0 1]

Dimension Number of features acquired in the data

Number of runs 15

B. Optimization Using the Cuckoo Search (CS)

CS is a nature-inspired technique that consists of several

eggs used to represent the PM. For four different PMs such

as ‘R’, ‘S’, ‘U’, and ‘W’, a set of VMs are represented by (1–

12). R = {1,2,3,4}, S = {5,6,7,8}, U = {9,10,0,0}, W =

{11,12,0,0}. Therefore, nest is denoted as {1,2,3,4},

{5,6,7,8}, {9,10,0,0}, {11,12,0,0}. CS is a metaheuristic

algorithm which is designed considering the behavior of the

Cuckoos. The nature of the Cuckoo is to lay eggs in other

nests considering the amazing abilities such as laying eggs

having strong nests or other eggs chosen as their eggs.

Parasitic Cuckoos roamed to find nests where other Cuckoos

lay eggs in no time and accuracy is high for laying eggs. In

such a scenario, the other Cuckoo will remove the eggs from

the nest and this reduces the probability of legitimate eggs. In

some cases, Cuckoos find that the egg in the nest is foreign

and therefore, abandon the nest and search somewhere for a

new nest [30]. In brief, Cuckoo at the final stage destroys the

original nest that it has intruded and occupied by pretending

that it belongs to the nest of the original mother bird and thus,

does irreparable harm by hatching the eggs early, and

therefore causing their demise. The evaluation procedure

consists of considering the three operators:

a) Levy fight

New solutions are produced using the levy flight. The

external Cuckoo gets more food when host chicks call.

b) Existing nests are replaced with new solutions

In this process, the probability of a new solution is

computed by randomly selecting a new value for each

solution.

c) Selection of VM list

A comparison has been made with the old value, if the new

one has better quality the updated solution is considered as

the final one and the other one is ignored. The algorithm for

the proposed CS is given as follows:

Algorithm 2. Cuckoo Search optimization

𝟏. 𝐈𝐧𝐩𝐮𝐭: 𝐀 𝐬𝐞𝐭 𝐨𝐟 𝐕𝐌𝐬, 𝐚𝐧𝐝 𝐬𝐞𝐭 𝐨𝐟 𝐏𝐌𝐬
𝟐. 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝐭𝐡𝐞 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫𝐬 𝐨𝐟 𝐂𝐒 – Simulation Round

− No. of Eggs (€) // No. of VMs
− Variables// No. of PMs

3. Compute the size of the VM Si ← Size (VM)
4. Fitness Function F (fit)

f(fit)

= {
True; if superior quality eggs are maintained (fr > fth)

False; otherwise

Where, fr is the random change in the position of the egg and

 fth is the threshold value for host birds.
5. For each simulation round

6. fr = ∑ VM energy = Pn
n
r=1

7. fth =
∑ power (VMs)n

c

Pc

8. VMallocation = CSO(Pn, Nvar, f(fit))

9. End
10. Return: An optimized VM list is created for allocation
11. End

C. Optimization Using the Ant Colony Optimization

(ACO)

ACO is a metaheuristic algorithm adapted to solve the VM

placement problem in the cloud environment [31]. As

developing a new swarm series algorithm will take a lot of

other researchers from other fields, the researchers change the

behavioral architecture of the swarm algorithm. ACO

technique is based on the foraging behavior of the ants to

compute the best path. The ants when foraging release, the

pheromone on the path where they move. As it has been

illustrated earlier the authors adopt behavioral change in the

algorithm architecture, the basic ACO work is customized in

several researches [32]. In the selection procedure, the ants

are considered as VM and PC has been observed as a vital

parameter for migration in most of the studied cases. The

probability of migration in the case of ACO is given by

Eq. (14) as follows.

 𝑃𝑟,𝑐 = {

0, if ℎ𝑜𝑠𝑡𝑐 have not enough resources for 𝑉𝑀𝑟

𝜄𝑟,𝑐
𝛼 .𝜂𝑟,𝑐

𝛽

∑ 𝜄𝑟,𝑐
𝛼 .𝜂𝑟,𝑐

𝛽𝑛
𝑘=1

, otherwise
 ()

where, 𝜄𝑟,𝑐
𝛼 is the pheromone released by the ants on the path

from allocation of 𝑉𝑀𝑟 𝑡𝑜 𝑃𝑀𝑐 that means ant prefers 𝑃𝑀𝑐 to

place 𝑉𝑀𝑟 in the previous iteration rounds if 𝜄𝑟,𝑐
𝛼 is larger and

𝜂𝑟,𝑐 is the visibility level. It signifies the tendency for

allocation from 𝑉𝑀𝑟 𝑡𝑜 𝑃𝑀𝑐 considering the ant perspective

itself. The suitability concept is introduced for allocation and

𝜂𝑟,𝑐 is computed as follows:

 𝜂𝑟,𝑐 =
1

𝑓𝑖𝑡𝑟,𝑐
 (15)

 𝑓𝑖𝑡𝑟,𝑐 = (𝑅𝑒𝑠𝐶𝑃𝑈 − 𝑅𝑒𝑠̅̅ ̅̅ ̅
𝑟,𝑐)

2
+ (𝑅𝑒𝑠𝑚𝑒𝑚𝑜𝑟𝑦 − 𝑅𝑒𝑠̅̅ ̅̅ ̅

𝑟,𝑐)
2

 +(𝑅𝑒𝑠𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ − 𝑅𝑒𝑠̅̅ ̅̅
�̅�,𝑐)2 ()

 𝑅𝑒𝑠̅̅ ̅̅ ̅
𝑟,𝑐 =

𝑅𝑒𝑠𝐶𝑃𝑈+𝑅𝑒𝑠𝑚𝑒𝑚𝑜𝑟𝑦+𝑅𝑒𝑠𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

3
 (17)

where, 𝑅𝑒𝑠𝐶𝑃𝑈 is the CPU utilization, 𝑅𝑒𝑠𝑚𝑒𝑚𝑜𝑟𝑦 is the

memory utilization, and 𝑅𝑒𝑠𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ is the utilization of

bandwidth for the remaining resources in PM. The idle state

and active state both account for the same. The larger value

of 𝜂𝑟,𝑐 shows that there is a greater tendency of ants to

allocate 𝑉𝑀𝑟 𝑡𝑜 𝑃𝑀𝑐. 𝛼 and 𝛽 represent the pheromone and

the importance of visibility. The algorithm based on ACO is

given as follows:

Algorithm 3. Ant Colony optimization (ACO)

𝟏. 𝐈𝐧𝐢𝐭𝐢𝐚𝐭𝐞 𝐭𝐡𝐞 𝐏𝐡𝐞𝐫𝐨𝐦𝐨𝐧𝐞 𝐥𝐞𝐯𝐞𝐥
𝟐. 𝐈𝐧𝐩𝐮𝐭 𝐧 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐚𝐧𝐭𝐬
3. for each simulation round (I) do

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

82

4. for each ant do
5. for each VM do
6. Place Vrto Hc as per the PM selection policy
7. End for
8. End for
9. Update the best position as per global pheromone policy.
10. End for
11. Output the migration and allocation
12. Repeat the steps until the best position is obtained.

VM is optimized using the different optimization

techniques and results are further evaluated to determine the

best optimization technique.

IV. RESULT AND DISCUSSION

Extensive simulation experiments have been conducted to

evaluate the performance of the designed secure cloud model.

The choice of simulator is driven by project specific

requirements. The simulation was performed on MATLAB in

addition to the Intel core i3 processor operated at 2.30 GHz

oscillator frequency, 64-bit OS, and 4 GB RAM. During the

experiment, we had two participants one is a cloud user and

the other is a cloud server. The cloud user acts like a data

owner and behaves as an authorized user. On the other side,

a cloud server acts like a Cloud Service Provider. The

performance of the designed model has been evaluated as

described below.

A. Performance Analysis

Scalability is the system's capacity to manage growing

workloads or resource demands efficiently. A system's

scalability tells how well it can scale up or down to meet

changing requirements without compromising performance,

energy efficiency, or satisfying SLAs—by evaluating how it

operates under various configurations (varying VMs and

PMs). The proposed work is therefore evaluated based on the

following evaluation parameters.

• Energy Consumption: It is calculated as the total

consumed power in order to perform utility to the VM

allocation and migration that maintains the SLA.

• SLAV: It is the ratio of the consumed power to desired

power consumption and violation of service level.

• Number of Migrations: It is the total number of

migrations of the VMs in the rack of PM.

Fig. 4 and Table 4 show the comparison of different

techniques to determine the energy consumed by the VM and

PM in the data centers. The workload is accessed and the

average energy consumed using the dragonfly technique is

11.89 kWh while energy consumed using the CS, ACO, PSO

and DF techniques is 12.7 kWh, 12.78 kWh, 12.86 kWh and

12.76 kWh, respectively. The analysis results prove that the

proposed dragonfly performs better in comparison to other

techniques. Therefore, VM placement using the dragonfly

technique consumes less energy and there is an improvement

of about 6.3%, 14%, 21%, and 6.7% from CS, ACO, PSO and

DF techniques, respectively.

Fig. 4. Comparative analysis for energy consumption (kWh).

Table 4. Comparative analysis for energy consumption (kWh) using different optimization techniques

Total VM Total PM
Proposed dragonfly technique

(kWh)

CS technique

(kWh)

ACO technique

(kWh)

PSO technique

(kWh)

DF technique

(kWh)

100 20 12.02000 14.23300 13.97000 14.03000 13.95000

200 40 10.02570 12.43870 11.97570 12.03570 11.95570

300 60 14.98700 15.00930 15.01160 15.02390 15.02490
400 80 12.28700 12.86370 12.94040 13.01710 13.09380

500 100 11.71213 12.09883 12.17553 12.25223 12.25893

600 120 11.12130 11.41800 11.49470 11.57140 11.57810
700 140 13.56667 14.06634 14.14304 14.21974 14.22041

800 160 11.94667 12.24634 12.32304 12.39974 12.47674

900 180 11.02667 12.00337 12.08007 12.15677 12.16847
1000 200 10.26667 10.71534 10.79204 10.86874 10.87544

Fig. 5 and Table 5 shows the comparison of different

techniques for SLA violation due to negotiation in contracts

between the user and service providers in the data centers.

The average SLA violation using the proposed dragonfly is

0.138 while the violation of service level using the CS, ACO,

PSO and DF technique is 0.146, 0.155, 0.163, and 0.160,

respectively.

The analysis results prove that the dragonfly technique

performs better in comparison to other techniques. Therefore,

the proposed dragonfly technique better manages the violation

in service level and it is improved by 5.7%, 11.2%, 15.6%,

and 13.7% from CS, ACO, PSO, and DF techniques

respectively. This improvement is due to the use of energy-

efficient techniques and heuristic search mechanisms by the

dragonflies.

Fig. 5. Comparative analysis for SLA violation.

0

5

10

15

20

100 200 300 400 500 600 700 800 900 1000

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
k

W
h

)

Total number of VMs

Proposed Dragonfly Technique CS technique

ACO technique PSO technique

DF technique

0

0.1

0.2

0.3

100 200 300 400 500 600 700 800 900 1000

S
L

A
-V

io
la

ti
o
n

s
(%

)

Total number of VMs
Proposed Dragonfly Technique CS technique

ACO technique PSO technique

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

83

Table 5. Comparative analysis for SLA violation using different optimization techniques

Total VM Total PM
Proposed dragonfly technique

(kWh)

CS technique

(kWh)

ACO technique

(kWh)

PSO technique

(kWh)

DF technique

(kWh)

100 20 0.10790 0.11233 0.12322 0.124544 0.11883
200 40 0.10604 0.11482 0.12360 0.13238 0.13246

300 60 0.13880 0.14758 0.15636 0.16514 0.14555

400 80 0.15577 0.16455 0.17333 0.18211 0.156566
500 100 0.10059 0.10937 0.11815 0.12693 0.098999

600 120 0.14545 0.15423 0.16301 0.17179 0.18057

700 140 0.16045 0.16923 0.17801 0.18679 0.19557
800 160 0.15405 0.16283 0.17161 0.18039 0.18917

900 180 0.14545 0.15423 0.16301 0.17179 0.18057
1000 200 0.16245 0.17123 0.18001 0.18879 0.19757

Table 6 shows the comparison of different techniques for

the Number of VM migrations in the data centers. The

average migrations using the proposed dragonfly is 7.8 while

the average number of migrations using the CS, ACO, PSO,

and DF techniques is 8.4, 9.3, 8.8, and 8.7, respectively. The

improvement is seen in the dragonfly technique in

comparison to other techniques as shown in Fig. 6. Therefore,

the dragonfly technique has lessened the number of VM

migrations and it is improved by 7.1%, 9.6%, 11.3%, and

10.3% from CS, ACO, PSO, and DF technique, respectively.

Table 6. Comparative analysis for number of migrations using different optimization techniques

Total VM Total PM Proposed dragonfly technique CS technique ACO technique PSO technique DF technique

100 20 1 1 2 2 1
200 40 2 3 4 3 3

300 60 6 8 8 8 7

400 80 9 9 10 9 8
500 100 3 5 4 4 5

600 120 8 9 9 11 10

700 140 15 13 14 12 16
800 160 1 2 3 3 4

900 180 15 14 16 15 14

1000 200 18 20 23 21 19

Fig. 6. Comparative analysis for the number of VM migrations.

B. Comparative Analysis

The present article based on different optimization

techniques is compared with the existing techniques to

validate the results. The results using the proposed dragonfly

are better as compared to CS, ACO, PSO and DF techniques.

The existing techniques proposed by Talwani et al. [19] use

the K-Nearest Neighbor (KNN) for VM migration and

allocation in the data center. The proposed work is also

compared with Khan and Santhosh [21], in which a hybrid

model using the CS and PSO technique is proposed for VM

migration. Further, it is compared with Huang et al. [2] in

which a VM allocation strategy was proposed by analyzing

the demands of user requirements.

Fig. 7 shows the comparison of the proposed dragonfly

technique with the existing technique for 100 numbers of

VMs. The average value for energy consumption using the

proposed dragonfly technique is 12.02 kWh while energy

consumed using dynamic cloud architecture proposed by

Talwani et al. [19] and Huang et al. [2] is 14.31 kWh and 15.3

kWh respectively. Thus, the proposed technique is improved

by 16% from Talwani et al. [19] and 21.4% from

Huang et al. [2]. The improvement in the proposed technique

is due to the energy-efficient technique employed with a

dragonfly that consumes less energy in comparison to

existing techniques.

Fig. 7. Comparison with existing techniques for energy consumption.

Fig. 8 shows the comparison of the proposed dragonfly

technique with the existing technique for 100 numbers of

VMs. The average value for SLA violation using the

dragonfly technique is 0.107 while the technique proposed by

Talwani et al. [19] and Huang et al. [2] shows SLA of about

0.148 and 0.5 respectively. Thus, the proposed technique is

improved by about 3% from Talwani et al. [19] and 7.4%

from Huang et al. [2]. The improvement in the proposed

technique is due to energy energy-efficient technique

employed with the dragonfly technique which consumes less

energy in comparison to existing techniques.

Fig. 9 shows the comparison of the proposed dragonfly

technique with the existing technique for 100 numbers of

VMs. The average value for migrations using the proposed

dragonfly technique is 8 while 8.5 migrations are shown by

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000

N
u
m

b
er

 o
f

V
M

 M
ig

ra
ti

o
n
s

Total number of VMs
Proposed Dragonfly Technique CS technique
ACO technique PSO technique
DF technique

0

10

20

Proposed

Dragonfly

Technique

Talwani et al.

2022

Huang et al.

2021

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n

(k
W

h
)

Energy Consumption (kWh)

Talwani et al. Huang et al.

2022 2021

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

84

Khan and Santhosh [21] and 9 shown by Talwani et al. [19].

Thus, the proposed technique is improved by 11.1% from

Talwani et al. [19] and 5.8% from Khan and Santhosh [21].

Fig. 8. Comparison with existing techniques for SLA violation.

Fig. 9. Comparison with existing techniques for the number of VM

migration.

The improvement in the proposed technique is due to

energy energy-efficient technique employed with the

dragonfly technique which consumes less energy in

comparison to existing techniques.

Fig. 10 shows the comparison of dragonfly technique with

the existing technique for 1000 numbers of VMs. The average

CPU utilized using the proposed dragonfly technique is

0.2977% while 0.30647% utilized using the technique

proposed by Huang et al. [2]. The technique proposed using

the CS, ACO, PSO, and DF have shown an average CPU

utilization of 0.3012% using work of Talwani et al. [19] and,

0.2997% using work of Khan and Santhosh [21]. Thus,

overall utilization for different number of test groups,

proposed dragonfly technique attained the best performance

with maximum CPU utilization.

Fig. 10. Comparison with existing technique for CPU utilization.

V. CONCLUSION

This paper presents the VM allocation and Migration

problem considering the different optimization techniques.

The different optimization techniques such as dragonfly, CS,

ACO, and PSO are implemented for the allocation of VM

with minimum wastage of resources. The proposed technique

is optimized in accordance with CPU utilization, and resource

requirements such as power and agreement of service levels.

The different techniques are evaluated in terms of energy

consumption, number of migrations, and SLA violation. The

analysis results shows that proposed dragonfly technique

perform better and further validated using the existing

technique. The simulation results are shown that proposed

technique is improved by 6.3% and 6.7% in terms of energy

consumption from CS and general DF technique and 3% for

SLA violation in comparison to current techniques.

Furthermore, 11% improvement is seen in VM migration in

comparison to existing techniques. In future, multiclass meta-

heuristic and machine learning techniques are employed for

better extraction of features. The limitations of the study’s

findings are that they may not be universally applicable to all

real-world cloud computing scenarios. This is because the

proposed technique’s performance was evaluated under

specific conditions, which constrain its ability to address the

full spectrum of operational challenges in diverse

environments.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

AP conducted the research and analyzed the data; JT

supervised the research work. Both authors had approved the

final version of the article.

ACKNOWLEDGMENT

0

0.2

0.4

0.6

Proposed

Dragonfly

Technique

Talwani et al.

2022

Huang et al.

2021

S
L

A
-V

io
la

ti
o

n
s

SLA-Violations

0

4

8

12

Proposed

Dragonfly

Technique

Talwani et al.

2022

Khan and

Santosh 2022

N
u
m

b
er

 o
f

V
M

M
ig

ra
ti

o
n
s

Number of VM Migrations

0.28

0.285

0.29

0.295

0.3

0.305

0.31

Proposed

Dragonfly

Technique

Talwani et

al. 2022

Huang et al.

2021

Khan and

Santosh

2022

C
P

U
 (

%
)

CPU Utilization (%)

Talwani et al. Huang et al.

 2022 2021

Talwani et al. Khan and

 2022 Santosh 2022

Talwani et al. Huang et al. Khan and

 2022 2021 Santosh 2022

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

85

The authors wish to express their sincere gratitude to

everyone who contributed to this research. We are

particularly thankful to our seniors for their unwavering

motivation and support throughout the duration of this work.

We would also like to extend our appreciation to our

colleagues and peers for their valuable insights and feedback,

which greatly improved the quality of this research

REFERENCES

[1] H. Chen, Y. Wen, and Y. Wang, “An energy-efficient method of

resource allocation based on request prediction in multiple cloud data
centers,” Concurrency and Computation: Practice and Experience,

e7636, 2023. doi: 10.1002/CPE.7636

[2] Y. Huang, H. Xu, H. Gao, X. Ma, and W. Hussain, “SSUR: An
approach to optimizing virtual machine allocation strategy based on

user requirements for cloud data center,” IEEE Transactions on Green

Communications and Networking, vol. 5, no. 2, pp. 670–681, 2021.
[3] F. Dewangan, A. Y. Abdelaziz, and M. Biswal, “Load forecasting

models in smart grid using smart meter information: A Review,”

Energies, vol. 16, no. 3, 1404, Jan. 2023. doi: 10.3390/EN16031404
[4] A. R. Madireddy and K. Ravindranath, “Dynamic virtual machine

relocation system for energy-efficient resource management in the

cloud,” Concurrency and Computation: Practice and Experience, vol.
35, no. 3, e7520, Feb. 2023. doi: 10.1002/CPE.7520

[5] E. Parvizi and M. H. Rezvani, “Utilization-aware energy-efficient

virtual machine placement in cloud networks using NSGA-III meta-
heuristic approach,” Cluster Computing, vol. 23, no. 4, pp. 2945–2967,

2020.

International Journal of Computer Theory and Engineering, Vol. 16, No. 3, 2024

86

[6] A. Ghasemi and A. T. Haghighat, “A multi-objective load balancing

algorithm for virtual machine placement in cloud data centers based on
machine learning,” Computing, vol. 102, no. 9, pp. 2049–2072, 2020.

[7] A. Kaur et al., “Algorithmic approach to virtual machine migration in

cloud computing with updated SESA algorithm,” Sensors, vol. 23, no.
13, 6117, Jul. 2023. doi: 10.3390/S23136117

[8] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual

machine placement schemes in cloud computing,” Journal of Network
and Computer Applications, vol. 66, pp. 106–127, May 2016.

doi: 10.1016/J.JNCA.2016.01.011

[9] P. A. Malla and S. Sheikh, “Analysis of QoS aware energy-efficient
resource provisioning techniques in cloud computing,” International

Journal of Communication Systems, vol. 36, no. 1, e5359, Jan. 2023.

doi: 10.1002/DAC.5359
[10] J. Ahmadi, A. T. Haghighat, A. M. Rahmani, and R. Ravanmehr,

“Confidence interval-based overload avoidance algorithm for virtual

machine placement,” Software: Practice and Experience, vol. 52, no.
10, pp. 2288–2311, Oct. 2022. doi: 10.1002/SPE.3127

[11] R. Zolfaghari, A. Sahafi, A. M. Rahmani, and R. Rezaei, “An energy-

aware virtual machines consolidation method for cloud computing:
simulation and verification,” Software: Practice and Experience, vol.

52, no. 1, pp. 194–235, 2022.

[12] A. Yousefipour, A. M. Rahmani, and M. Jahanshahi, “Energy and cost-

aware virtual machine consolidation in cloud computing,” Software:

Practice and Experience, vol. 48, no. 10, pp. 1758–1774, 2018.

[13] M. H. Shirvani, A. M. Rahmani, and A. Sahafi, “A survey study on
virtual machine migration and server consolidation techniques in

DVFS-enabled cloud datacenter: taxonomy and challenges,” Journal

of King Saud University-Computer and Information Sciences, vol. 32,
no. 3, pp. 267–286, 2020.

[14] M. Tarahomi, M. Izadi, and M. Ghobaei-Arani, “An efficient power-

aware VM allocation mechanism in cloud data centers: A micro
genetic-based approach,” Cluster Computing, vol. 24, no. 2, pp. 919–

934, 2021.

[15] M. Ghobaei-Arani, A. A. Rahmanian, M. Shamsi, and A. Rasouli-
Kenari, “A learning-based approach for virtual machine placement in

cloud data centers,” International Journal of Communication Systems,

vol. 31, no. 8, e3537, May 2018. doi: 10.1002/DAC.3537
[16] M. Ghobaei-Arani, M. Shamsi, and A. A. Rahmanian, “An efficient

approach for improving virtual machine placement in cloud computing
environment,” Journal of Experimental & Theoretical Artificial

Intelligence , vol. 29, no. 6, pp. 1149–1171, Nov. 2017.

doi: 10.1080/0952813X.2017.1310308
[17] X. Ruan, H. Chen, Y. Tian, and S. Yin, “Virtual machine allocation and

migration based on performance-to-power ratio in energy-efficient

clouds,” Future Generation Computer Systems, vol. 100, pp. 380–394,
2019.

[18] C. Wei, Z.-H. Hu, and Y.-G. Wang, “Exact algorithms for energy-

efficient virtual machine placement in data centers,” Future Generation
Computer Systems, vol. 106, pp. 77–91, 2020.

[19] S. Talwani et al., “Machine-learning-based approach for virtual

machine allocation and migration,” Electronics, vol. 11, no. 19, 3249,
2022.

[20] J. Ahmadi, A. T. Haghighat, A. M. Rahmani, and R. Ravanmehr, “A

flexible approach for virtual machine selection in cloud data centers

with AHP,” Software: Practice and Experience, vol. 52, no. 5, pp.

1216–1241, May 2022. doi: 10.1002/SPE.3062
[21] M. S. A. Khan and R. Santhosh, “Hybrid optimization algorithm for

VM migration in cloud computing,” Computers and Electrical

Engineering, vol. 102, 108152, Sep. 2022.
doi: 10.1016/J.COMPELECENG.2022.108152

[22] F. Abdessamia, W. Z. Zhang, and Y. C. Tian, “Energy-efficiency

virtual machine placement based on binary gravitational search
algorithm,” Cluster Computing, vol. 23, no. 3, pp. 1577–1588, Sep.

2020. doi: 10.1007/S10586-019-03021-0/METRICS

[23] M. Abdel-Basset, L. Abdle-Fatah, and A. K. Sangaiah, “An improved
Lévy based whale optimization algorithm for bandwidth-efficient

virtual machine placement in cloud computing environment,” Cluster

Computing, vol. 22, no. 4, pp. 8319–8334, 2019.
[24] N. Rasouli, R. Razavi, and H. R. Faragardi, “EPBLA: Energy-efficient

consolidation of virtual machines using learning automata in cloud data

centers,” Cluster Computing, vol. 23, no. 4, pp. 3013–3027, 2020.
[25] S. Azizi, M. Zandsalimi, and D. Li, “An energy-efficient algorithm for

virtual machine placement optimization in cloud data centers,” Cluster

Computing, vol. 23, no. 4, pp. 3421–3434, 2020.
[26] A. S. Abohamama and E. Hamouda, “A hybrid energy-aware virtual

machine placement algorithm for cloud environments,” Expert Systems

with Applications, vol. 150, 113306, 2020.

[27] M. H. Shirvani, “An energy-efficient topology-aware virtual machine

placement in cloud datacenters: A multi-objective discrete JAYA

optimization,” Sustainable Computing: Informatics and Systems, vol.
38, 100856, 2023.

[28] Y. Meraihi, A. Ramdane-Cherif, D. Acheli, and M. Mahseur,

“Dragonfly algorithm: A comprehensive review and applications,”
Neural Computing and Applications, vol. 32, pp. 16625–16646, 2020.

[29] M. Alshinwan et al., “Dragonfly algorithm: A comprehensive survey

of its results, variants, and applications,” Multimedia Tools and
Applications, vol. 80, no. 10, pp. 14979–15016, Apr. 2021.

doi: 10.1007/S11042-020-10255-3/METRICS

[30] M. A. N. Saif, S. K. Niranjan, B. A. H. Murshed et al., “Multi-objective
Cuckoo Search Optimization Algorithm for optimal resource allocation

in cloud environment,” in Proc. 2022 3rd International Conference for

Emerging Technology (INCET), 2022, pp. 1–7.
[31] M. K. Hossain, M. Rahman, A. Hossain, S. Y. Rahman, and M. M.

Islam, “Active idle virtual machine migration algorithm-a new ant
colony optimization approach to consolidate virtual machines and

ensure green cloud computing,” in Proc. ETCCE 2020, International

Conference on Emerging Technology in Computing, Communication
and Electronics, Dec. 2020. doi: 10.1109/ETCCE51779.2020.9350915

[32] T. P. Shabeera, S. D. M. Kumar, S. M. Salam, and K. M. Krishnan,

“Optimizing VM allocation and data placement for data-intensive
applications in cloud using ACO metaheuristic algorithm,”

Engineering Science and Technology, an International Journal, vol. 20,

no. 2, pp. 616–628, 2017.

Copyright © 2024 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

